PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

Key Features
- Industry standard Quarter-brick
 57.9 x 36.8 x 11.4 mm (2.28 x 1.45 x 0.45 inch)
- Input range 40-60 Vin
- Deliver up to 700W maximum output power
- Fully tightly regulated output voltage
- High efficiency, typical 96.4 % at 50% load
- 2250V input to output functional isolation
- Basic insulation
- Wide operating temperature range -30°C to 90°C
- Input overvoltage suppression
- Soft-start for handling of high capacitance loads
- More than 3.34 million hours MTBF

General Characteristics
- Optional baseplate
- Optional single output pins
- Hiccup OCP, OTP, OVP and under voltage lockout

Contents
Ordering Information ... 2
General Information ... 2
Safety Specification ... 3
Absolute Maximum Ratings ... 4
Electrical Specification .. 5
12 V, 58.3 A / 700 W
PKM4713 NH PI ... 5
EMC Specification ... 9
Operating Information ... 10
Thermal Consideration ... 13
Connections ... 15
Mechanical Information .. 16
Soldering Information .. 19
Delivery Information ... 20
Product Qualification Specification ... 21

Safety Approvals
Design for Environment
Meets requirements in high-temperature lead-free soldering processes.
PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKM 4713NH PI</td>
<td>12 V @ 58.3 A</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>Options</th>
<th>PKM 4713NH Plunteners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting option</td>
<td>n1 n2 n3 n4 n5</td>
</tr>
<tr>
<td>Baseplate</td>
<td>o</td>
</tr>
<tr>
<td>Power pinning</td>
<td>o</td>
</tr>
<tr>
<td>Lead length</td>
<td>o</td>
</tr>
<tr>
<td>Pin in paste</td>
<td>o</td>
</tr>
</tbody>
</table>

Options	Description

- n1: PI Through hole
- n2: HS Baseplate
- n3: Double power pin
- n4: 5.33 mm
- LA: 3.89 mm
- LB: 4.57 mm
- LC: 2.79 mm
- n5: 1 Pin in paste version with dry-pack package

* Standard variant (i.e. no option selected).
* Pin 4 and 10 are not mounted in single pin version.
For example, the through hole version product with baseplate, single power pin with short lead length is PKM4713NHPIHSSPLA.

General Information

Reliability
The failure rate (λ) and mean time between failures (MTBF= 1/λ) is calculated at max output power and an operating ambient temperature (T_A) of +40°C. Flex Power Modules uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure</th>
<th>Std. deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>299 nFailures/h</td>
<td>36 nFailures/h</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKM-NH series = 3.34 Mh.
MTBF at 90% confidence level = 2.89 Mh

Compatibility with RoHS requirements
The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex Power Modules products are found in the Statement of Compliance document.

Quality Statement
The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty
Warranty period and conditions are defined in Flex Power Modules General Terms and Conditions of Sale.

Limitation of Liability
Flex Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2018
The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
For basic insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides functional or basic insulation from the AC mains and the product's output is reliably connected to protective earth according to IEC/EN/UL 60950-1.

For functional insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides basic or supplementary insulation from the AC mains and the product's output is reliably connected to protective earth according to IEC/EN/UL 60950-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/EN/UL 60950-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage (V_{iso}) meets the voltage strength requirement for basic insulation according to IEC/EN/UL 60950-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{\text{op}}</td>
<td>-40</td>
<td>+125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_{\text{st}}</td>
<td>-55</td>
<td>+125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>V_{\text{i}}</td>
<td>-0.5</td>
<td>+60</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>C_{\text{out}}</td>
<td>470</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>C_{\text{out,E,S,R}}</td>
<td>10</td>
<td>80</td>
<td></td>
<td>mOhm</td>
</tr>
<tr>
<td>V_{\text{iso}} (input to output)</td>
<td>2250</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>V_{\text{iso}} (input to baseplate)</td>
<td>1500</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>V_{\text{iso}} (baseplate to output)</td>
<td>750</td>
<td></td>
<td></td>
<td>Vdc</td>
</tr>
<tr>
<td>V_{\text{tr}}</td>
<td>80</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{\text{RC}}</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

© Flex

Technical Specification

PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

© Flex
Electrical Specification

PKM 4713NH

Fully Regulated DC-DC Converters

Input 40-60V, Output up to 58.3 A / 700 W

PKM 4713NH PI

To start reading, you need a table of specifications for the PKM 4713NH DC-DC converters. The table below lists various characteristics and their specifications. The table is structured with columns for `Characteristics`, `Conditions`, `min`, `typ`, and `max`, followed by the `Unit`.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>Input voltage range</td>
<td>40</td>
<td>60</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>V</td>
</tr>
<tr>
<td>C_{i}</td>
<td>Internal input capacitance</td>
<td>V_{i} = 53 V</td>
<td>15</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P_{O}</td>
<td>Output power</td>
<td>V_{i} = 40-60 V</td>
<td>0</td>
<td>700</td>
<td>W</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_{O}</td>
<td>96.4</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{O}</td>
<td>96.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I_{O}, V_{i} = 48 V</td>
<td>96.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{O}, V_{i} = 48 V</td>
<td>96.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{d}</td>
<td>Power Dissipation</td>
<td>max I_{O}</td>
<td>28.4</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>I_{O}</td>
<td>Input idling power</td>
<td>I_{O} = 0 A, V_{i} = 53 V</td>
<td>6.8</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P_{NC}</td>
<td>Input standby power</td>
<td>V_{i} = 53 V (turned off with RC)</td>
<td>0.3</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>f_{s}</td>
<td>Switching frequency (Ripple f_{s})</td>
<td>0-100% of max I_{O}</td>
<td>375</td>
<td>400</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{O}</td>
<td>Output voltage initial setting</td>
<td>T_{p1} = +25°C, V_{i} = 53 V, I_{O} = 58.3 A</td>
<td>12</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-100% of max I_{O}</td>
<td>11.64</td>
<td>12.36</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{O} = 0 A</td>
<td>12</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{O}, V_{i} = 40-60 V</td>
<td>3</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{O}</td>
<td>3</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{i} = 53 V, Load step 25-75-25% of max I_{O}, di/dt = 1 A/µs</td>
<td>±350</td>
<td>450</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{O} = 0 A</td>
<td>100</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-100% of max I_{O}</td>
<td>9</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start-up time (from V_{i} connection to 90% of V_{O})</td>
<td>6</td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC-shut-down fall time (from RC off to 10% of V_{O})</td>
<td>max I_{O}</td>
<td>2</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{O}</td>
<td>165</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{O}</td>
<td>2</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC-shut-down fall time (from RC off to 10% of V_{O})</td>
<td>I_{O} = 0 A</td>
<td>200</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_{O} = 0 A</td>
<td>0</td>
<td>58.3</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current limit threshold</td>
<td>T_{p1} = 0.5 T_{p1}</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short circuit current</td>
<td>T_{p1} = 25°C</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>C_{out}</td>
<td>Recommended Capacitive Load, See Note 1</td>
<td>T_{p1} = -30°C - 90 °C</td>
<td>2200</td>
<td>15000</td>
<td>µF</td>
</tr>
<tr>
<td>C_{out}</td>
<td>Recommended Capacitive Load, See Note 2</td>
<td>T_{p1} = -10°C - 90 °C</td>
<td>470</td>
<td>15000</td>
<td>µF</td>
</tr>
<tr>
<td>C_{out, ESR}</td>
<td>See Note 3</td>
<td>10</td>
<td>80</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>V_{Oac}</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, V_{O}</td>
<td>200</td>
<td>500</td>
<td>mVp-p</td>
</tr>
<tr>
<td>OVP_{in}</td>
<td>Input Overvoltage Protection</td>
<td>0-100% of max I_{O}</td>
<td>78</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sink current</td>
<td>See operating information</td>
<td>0.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Source current</td>
<td>RC pin connected to -IN</td>
<td>0.51</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Trigger level</td>
<td>See operating information</td>
<td>1</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Response time</td>
<td>RC pin connected to -IN</td>
<td>0.1</td>
<td>0.5</td>
<td>ms</td>
</tr>
</tbody>
</table>

The table lists various electrical specifications of the DC-DC converters, including input voltage range, output power, efficiency, power dissipation, input and output characteristics, and more. Each specification is detailed with its minimum, typical, and maximum values, as well as the units of measurement.
Technical Specification

PKM4713NH Fully Regulated DC-DC Converters

Input 40-60V, Output up to 58.3 A / 700 W

Note 1: Restrictions in start-up current at high output capacitance, see graph “Maximum start-up current vs. Output capacitance”. The module shall not be used without input and output capacitors.

Note 2: May lead to OVP during start-up under -10°C degree. The module shall not be used without input and output capacitors.

Note 3: ESR is highly temperature dependent for some types of capacitors e.g. aluminum electrolyte capacitors will freeze in cold environment.

Typical Characteristics

12 V, 58.3 A / 700 W

Efficiency

Efficiency vs. load current and input voltage at $T_{PI} = +25^\circ$C.

Power Dissipation

Dissipated power vs. load current and input voltage at $T_{PI} = +25^\circ$C.

Output Characteristics

Output voltage vs. load current and input voltage at $T_{PI} = +25^\circ$C.

Available Power

Output power vs. input voltage at $T_{PI} = +25^\circ$C.

Current Limit Characteristics

Output voltage vs. load current at $I_0 > max I_0$, $T_{PI} = +25^\circ$C.
Typical Characteristics

PKM4713NH Fully Regulated DC-DC Converters

Input 40-60V, Output up to 58.3 A / 700 W

PKM 4713NH PI

Start-up

![Start-up](image)

Start-up enabled by connecting V_i at:

- $T_{IN} = +25^\circ C$, $V_i = 53 V$, $C_{OUT} = 2.2 mF$
- $I_o = 58.3 A$ resistive load.

Top trace: output voltage ($5 V/\text{div.}$).

Bottom trace: input voltage ($20 V/\text{div.}$).

Time scale: (5 ms/\text{div.}).

Shut-down

![Shut-down](image)

Shut-down enabled by disconnecting V_i at:

- $T_{IN} = +25^\circ C$, $V_i = 53 V$, $C_{OUT} = 2.2 mF$
- $I_o = 58.3 A$ resistive load.

Top trace: output voltage ($5 V/\text{div.}$).

Bottom trace: input voltage ($20 V/\text{div.}$).

Time scale: (1 ms/\text{div.}).

Output Ripple & Noise

![Output Ripple & Noise](image)

Output voltage ripple at:

- $T_{IN} = +25^\circ C$, $V_i = 53 V$, $C_{OUT} = 2.2 mF$
- $I_o = 58.3 A$ resistive load.

Trace: output voltage ($100 mV/\text{div.}$).

Time scale: (2 μs/\text{div.})

Output Load Transient Response

![Output Load Transient Response](image)

Output voltage response to load current step-change ($14.6-43.7-14.6 A$) at:

- $T_{IN} = +25^\circ C$, $V_i = 53 V$, $C_{OUT} = 2.2 mF$

Top trace: output voltage ($500 mV/\text{div.}$).

Bottom trace: load current ($10 A/\text{div.}$).

Time scale: (1 ms/\text{div.})

Maximum start-up current vs. Output capacitance

![Maximum start-up current vs. Output capacitance](image)

Maximum start-up current vs output capacitance with resistive load at $T_{IN} = +25^\circ C$.

- 40 V
- 48 V
- 53 V
- 60 V

© Flex

Technical Specification

28701-BMR66905 R1A September 2018
Typical Characteristics

12 V, 58.3 A / 700 W

Output Power Derating – Single pin and base plate (PKM4713 NH PI HS SP)

Available power vs. ambient air temperature and airflow at $V_i = 53$ V. See Thermal Consideration section.

Thermal Resistance – Single pin and base plate (PKM4713 NH PI HS SP)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_i = 53$ V.
EMC Specification
Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental ripple frequency is 400 kHz at $V_i = 53$ V and max I_o.

Conducted EMI Input terminal value (typ)

EMI without filter

Optional external filter for class B
Suggested external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

Filter components:
- C1, C2, = 5 μF
- C3 = 15 μF 100V; KRM55WR72A156MH01K (Murata)
- C6 = 470 μF 100 V; UPJ2A471MHD (Nichicon)
- C4, C5 = 20 nF, 1500V
- L1, L2 = 0.47mH

EMI with filter

Test set-up

Layout recommendations
The radiated EMI performance of the product will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Output ripple and noise
Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.
Operating information

Input Voltage

The long term operational input voltage range 40 to 60 Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 Vdc systems -40.5 to -57.0 V and the transitional period -60 Vdc systems, -50.0 to -72.0 V with some degradation in power.

Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependent on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like transient voltage suppression diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 examines the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect. The Hybrid Regulation Ratio implemented in this product ensures effective attenuation of input voltage transients. See section “Input voltage transient suppression” for further details.

Turn-on/off Input Voltage

The products monitor the input voltage and will turn on and turn off at predetermined levels that are stated in the Electrical Specification for the specific product. The minimum hysteresis between turn on and turn off input voltage is 3 V helps avoiding start-up oscillations and repeated restarts that could occur otherwise.

Remote Control (RC)

The products are fitted with a remote control function referenced to the primary negative input connection (-In), with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor, or a mechanical switch placed close to the product. The RC pin has an internal pull up resistor of 10 kΩ to +5 V. The threshold level has a hysteresis and the function is designed to be robust to noise.

The external device must provide a minimum required sink current to guarantee a voltage not higher than the maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 5 V.

The standard product is provided with “negative logic” RC and will be off until the RC pin is connected to -In. To turn off the product the RC pin should be left open. To power up the product automatically, without the need for control signals or a switch, the RC pin can be wired directly to -In.

The second option is “positive logic” RC, which can be ordered by adding the suffix “P” to the end of the part number. When the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to -In. The product will restart automatically when this connection is opened.

The RC function incorporates a short delay in order to not trigger on glitches. Typically this filter has a settling time of 0.1-0.5 ms. This setup significantly reduces the risk for noise causing the converter to shutdown or power up accidently.

See Design Note 021 for detailed information.

Input and Output Impedance

The impedances of both the input source and the load will interact with the impedance of the product.

The application must be designed to meet the criteria of both ESR and capacitance for all T_{amb} temperatures. This means that it may not be sufficient to mount a capacitor rated within the tolerances of minimum capacitance and ESR limits if these values derate due to temperature.

Input Decoupling Capacitors

It is important that the input source has low characteristic impedance. Recommended source impedance is below 100 mΩ over the T_{amb} temperature range or input oscillations may occur at start-up or at a high load current surge. Minimum external capacitance for the input is 470 µF if it is of the electrolytic type to cater for the impedance over the temperature range. Modern stacked ceramics provide high capacitance with low ESR over a wide range of temperatures and might be considered.
Recommended input capacitors connected in parallel as follows:

- 470 µF 100 V; UPJ2A471MHD from Nichicon or similar,
- 15 µF 100 V stacked ceramics; KRM55WR72A156MH01K from Murata or similar.

This means that the input capacitor value may need to be substantially larger than specified minimum capacitance, if the ESR of the impedance increase, to maintain a stable input at low temperatures.

Output Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors close to the load. The most effective technique is to locate very low ESR capacitors as close to the load as possible and, if needed, the bulk of capacitance with low ESR close to the converter output.

OS-CON type of capacitor has very low ESR and very good performance in both warm and cold conditions and therefore this type is recommended to place as near the point of load as possible for de-coupling the load.

Ceramic type of capacitor has also very low ESR and they are cheap in comparison to OS-CON. Drawbacks are derating due to bias voltage and temperature.

The use of very low ESR capacitors is restricted due to the high Q-value and stable operation is guaranteed with a verified ESR value of >10 mΩ across the output connections. If the application cannot guarantee the ESR condition it is possible to dampen the Q-value by adding an appropriate resistor in series with the capacitance or by mounting the very low ESR close to the point of load and thereby include the conductor resistance in the loop.

For ceramic capacitors it is not recommended to use more than 1 mF (rated capacitance) close to the converter output connections.

As an example it is not recommended to mount more than two (2) Panasonic SEPC 470 µF 16 V (OS-CON) in parallel close to the converter output connections as using several parallel capacitors will lower the effective ESR.

The recommended type of capacitance to place near the converter output connections is a low ESR aluminium electrolyte in parallel with a ceramic capacitor according to the picture under “Input and Output Impedance”. It is recommended that this type of capacitance is used as bulk in high capacitive load application. The aluminium electrolyte works well with the converter but it is important to choose proper temperature classification as this has impact on the expected life span. Cold conditions have great impact on ESR value for the aluminium electrolyte; if cold environment is expected this must be considered and a component with ESR rated for low temperatures is preferred to secure performance.

The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PCB layouts and cabling.

External decoupling capacitors will become part of the product’s control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical Specification.

The end user must secure that the used capacitance is within specified limits described under External Decoupling Capacitors for all ambient temperatures as this highly impact ESR performance and capacitance.

Recommended output capacitors connected in parallel per output branch as follows:

- 470 µF 16 V; 16SEPC470M from Panasonic or similar,
- 1000 µF 16 V; UPJ1C102MHD from Nichicon or similar.

For further information please contact your local Flex Power Modules representative.

Input voltage transient suppression

The hybrid regulated product effectively suppress input voltage transients. This applies to both short duration transients and step-like level shifts of the input voltage.

The amplitude of the output transients resulting of short duration transient at the input voltage will be less than 1V. In case of a step-like level shift of the input voltage, the output voltage will rise to a new regulated ratio output voltage, described in Window of operation, or to 12V depending of the final value of the input voltage step. The hybrid regulated ratio prevents overshoots and undershoots in association with this transition. These capabilities significantly reduce the requirements on input transient response of Point of Load regulators fed from this product.

Parallel Operation, without Droop Load Share function

Two or more products may be paralleled for redundancy if the total power is less than (n-1)*P0 max. External current sharing circuits must be used.

See Design Note 006 for detailed information.

Over Temperature Protection (OTP)

The products are protected from thermal overload by an internal over temperature shutdown circuit.

When Tp1 as defined in thermal consideration section exceeds 140°C the product will shut down. The product will make continuous attempts to start (non-latching mode) and resumes normal operation when the temperature has dropped >10°C below the temperature threshold.

Over Voltage Protection (OVP)

The products have output over voltage protection that will shut down the product in over voltage conditions. The product will resume normal operation automatically after removal of the over voltage condition. The OVP setpoint can be found in the Electrical Specification.

The input over voltage protection will stop the switching and the
output will be left as is when the converter reach the input voltage specified in the Electrical Specification. The converter will resume normal operation when Vin drop below the voltage specified in the Electrical Specification.

Over Current Protection (OCP)
The products include current limiting circuitry for protection at continuous overload. It is made up of one real-time (peak) current monitor that constitutes a power limiter and another part which detects longer overloads and enters a delayed hiccup. At output currents in excess of maximum output current (max Iₒ) the output voltage decrease towards zero and the current increase. If the overload persist the converter will after ~1.6 ms enter hiccup, disable the output and then make continuous restart attempts after a first timeout period, creating a delayed hiccup. The delay is set to a significantly longer time than the activation time (~200:1) in order to create low rms-currents in a fault condition. The timer and OCP setpoint are set to not trig on capacitive load during start-up, or cut-in during input voltage transients. The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output OCP current specified in the Electrical Specification.

Pre-bias Start-up
The product has a Pre-bias start up functionality and will not sink current during start up if a Pre-bias source is present at the output terminals.
To guarantee a correct pre-bias start-up a minimum load of 20 mA is needed at any time output voltage is above 7V. When output voltage is above 7V the start-up time will be dependent of load and capacitance. Typical applications with PoL’s loading the module will generally provide the minimum loading to insure standard ramp rates for start-up.
At shutdown, OVP or OTP, the product will directly shut off the synchronous rectification to avoid reverse current.
The product will not start-up if the output voltage is higher than the OVP-level specified in the Electrical Specification.

Soft Start
The soft start function ramps up the output voltage. The main purpose is to control the charging current to the external output capacitors. The ramp-up is however pretty fast so there is a significant inrush current at the maximum capacitive load. The inrush current could lower the input rail, if the input impedance is too high. See the Input and Output impedance section. If the input voltage drops below 39 V the converter stops and makes new start-attempts when the input voltage bounces back up.

Isolation
The open frame products have 2250 V input to output functional isolation. Leaving the baseplate free-floating means that the 2250 V input to output isolation voltage is kept. Steady-state the voltage across the isolation barrier is not higher than the input voltage, maximum 60 V, and the output voltage together.

In order to keep the 2250 V functional isolation voltage between the product and the host board the keep away areas for components and traces must be followed according to the
Thermal Consideration

General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation. For products mounted on a PCB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Power Derating graph found in the Typical Characteristics section for each model provides the available output power vs. ambient air temperature and air velocity at 53 °C.

To enhance the thermal transfer the products are available with a baseplate as well as dual output pins. The products respond well on cooling methods due to its low internal thermal resistance.

Convection cooling
The products power density is up to 405 W/cubic inch leaving a limited area for convection cooling and the heat generated is significant at high load. Just air flow is not sufficient for the product to deliver full power at high ambient temperatures. In the section Typical characteristics, Output Power derating – Different cooling, the benefits of base plate and heat sink is clearly visualized. The absolute best performance can be obtained by using the highest heat sink possible that allows the most air to be forced through and thereby increase cooling.

Conduction cooling
The thermal design is made to ease the transfer of heat from the product via both the input and the output power pins. The optional baseplate can be connected to a cold wall. See the Typical Characteristics section for graphs.

Dual output pins
Products with dual output pins have from 2 and up to 20°C better thermal derating than single pin products.

As well as decreasing the power losses in the pins, dual pins will spread both the current and the heat better on the host board reducing the stress on the solder joints. For backward compatibility and designs using less than 500 W output power the single pin products can be used with up to 5 °C worse derating.

See Typical Characteristics section for more details.

Layout considerations
Recommended host board footprint and plated through hole dimensions are defined by best practices to combine low resistance current/power distribution, standard mounting assembly techniques and relevant tolerances. When deviations in e.g. through plated hole sizes are applicable by end user, alternative techniques as wash away spacers, tailored fixtures or gap pads can be used by manufacturers to secure product form factor and functionality.

Inappropriate assembly techniques can stress the interconnection leads of the module and reduce the thermal coupling between e.g. the module’s base plate and cold wall.

Special care should be paid to the current distribution flow within the host board by appropriate amount of copper layers/traces/interconnecting vias.

If the pins are connected to a plane in the host board this will become an efficient heat sink and significantly increase the maximum power before maximum temperature is reached. The outer layer on the host board should have a large number of vias close to the outside of the pins’ shoulders in order to improve current and heat spreading between the host board and the product. The current and heat bottleneck is often close to the pin and it might be good to use extra PCB layers to connect to the pin and let the vias around the standoff spread the power to the power planes. For further information please contact your local Flex Power Modules representative.

Baseplate
The baseplate itself improves the performance by smoothening out the local hotspots on the converter. The other advantage is that it is an efficient way to dissipate heat from the product. Connected to a heatsink or a coldwall higher power can be delivered at high ambient temperatures. This also opens up for the use of advanced cooling technologies such as heatpipes or liquid cooling. See the Typical Characteristics section for graphs on different cooling and pinning options.

The product is tested on a 254 x 254 mm, 35 µm (1 oz), 16-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.
For products with base plate used in a sealed box/cold wall application, cooling is achieved mainly by conduction through the cold wall. The Output Current Derating graphs are found in the Output section for each model. The product is tested in a sealed box test set up with ambient temperatures 85°C at different output power conditions. See Design Note 028 for further details.

Definition of product operating temperature
The product operating temperatures is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1, P2, P3 and P4. The temperature at these positions (TP1, TP2, TP3, TP4) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum TP1, TP2, TP3 and TP4, measured at the reference points P1, P2, P3 and P4 are not allowed and may cause permanent damage.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Pcb prim</td>
<td>TP1=125°C</td>
</tr>
<tr>
<td>P2</td>
<td>M300</td>
<td>TP2=125°C</td>
</tr>
<tr>
<td>P3</td>
<td>T203</td>
<td>TP3=125°C</td>
</tr>
<tr>
<td>P4</td>
<td>N305</td>
<td>TP4=125°C</td>
</tr>
</tbody>
</table>

Ambient Temperature Calculation
For products with baseplate the maximum allowed ambient temperature can be calculated by using the thermal resistance.

1. The power loss is calculated by using the formula
 \[
 \left(\frac{1}{\eta}\right) \cdot output\ power = power\ losses\ (Pd)
 \]
 \[
 \eta = efficiency\ of\ product,\ e.g.\ 96.4\% = 0.964
 \]

2. Find the thermal resistance (Rth) in the Thermal Resistance graph found in the Output section for each model. Note that the thermal resistance can be significantly reduced if a heat sink is mounted on the top of the base plate.

Calculate the temperature increase (ΔT).

\[
\Delta T = R_{th} \cdot P_d
\]

3. Max allowed ambient temperature is:

Max TP1 - ΔT.

E.g. PKM 4713NH PI, open frame at 1m/s:
1. \(\left(\frac{1}{0.964} - 1 \right) \times 756 \, W = 28.2 \, W \)

2. \(28.2 \, W \times 2.9^\circ \, C/W = 81.8^\circ C \)

3. \(125^\circ C - 81.8^\circ C = \text{max ambient temperature is 43.2}^\circ C \)

4. The thermal performance can be significantly improved by mounting a heat sink on top of the base plate.

The thermal resistance between base plate and heat sink, \(R_{th, b-h} \) is calculated as:

\[
R_{th, b-h} = \frac{(T_{\text{base plate}} - T_{\text{heat sink}})}{R_{th}}
\]

The actual temperature will be dependent on several factors such as the PCB size, number of layers and direction of airflow.

Connections

The picture shows the bottom view of the module.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+In</td>
<td>Positive Input</td>
</tr>
<tr>
<td>2</td>
<td>RC</td>
<td>Remote Control</td>
</tr>
<tr>
<td>3</td>
<td>-In</td>
<td>Negative Input</td>
</tr>
<tr>
<td>4</td>
<td>+Out</td>
<td>Positive Output</td>
</tr>
<tr>
<td>5</td>
<td>-Out</td>
<td>Negative Output</td>
</tr>
<tr>
<td>9</td>
<td>+Out</td>
<td>Positive output</td>
</tr>
<tr>
<td>10</td>
<td>-Out</td>
<td>Negative output</td>
</tr>
</tbody>
</table>

Optionally pins 4 and 10 can be omitted but for thermal reasons and optimal current distribution this is not recommended. See Typical Characteristics for thermal information.
PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

Mechanical Information - Hole Mount, Open Frame Version

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

Mechanical Information- Hole Mount, Base Plate Version

Pin positions according to recommended footprint

Table 3

<table>
<thead>
<tr>
<th>Pin options</th>
<th>Footprint</th>
<th>Standard/Dual pin out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 32</td>
<td>2H2P240,06</td>
<td></td>
</tr>
<tr>
<td>Pins 40</td>
<td>2H2P240,04</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Weight options</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>9.8±0.5 (0.43)</td>
</tr>
<tr>
<td>Low profile</td>
<td>12±0.5 (0.02)</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Lead length</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>5.55 (0.21)</td>
</tr>
<tr>
<td>Low profile</td>
<td>3.67 (0.14)</td>
</tr>
<tr>
<td>Ultra Low profile</td>
<td>2.79 (0.10)</td>
</tr>
</tbody>
</table>

Note 1: Case
Materials: Aluminium
For screw attachment apply mounting torque of max 0.44 Nm (30 lbf in).
M8 screws shall not penetrate more than 25 mm (1 in) into base plate. Standard option,
12 mm (0.47) into base plate - Low profile option.

PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.
PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W

Technical Specification
28701-BMR66905 R1A September 2018
© Flex

Mechanical Information- Layout information

Top view - Layout restrictions

Keep away area criteria:
Pin spacing [0.095"] safety clearance between input and output circuitry acc. to EN 60950-1 2250V.
Assembly tolerances are included.

Note 1: Capacitors
Recommended keep away area for open vias/traces connected to output circuitry to withstand input to output transition voltage according to absolute maximum ratings.

Note 2: Ferrite cores
Recommended keep away area for open vias/traces connected to input circuitry to withstand input to output transition voltage according to absolute maximum ratings.

Note 3: Outline according to recommended footprint.

All dimensions in mm [inch]

Tolerances unless specified
±0.06 mm [0.002"] ±0.25 mm [0.01"]

Note: All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
Soldering Information – Hole Mount through Pin in Paste Assembly

The product is intended for forced convection or vapor phase reflow soldering in SnPb and Pb-free processes.

The reflow profile should be optimised to avoid excessive heating of the product. It is recommended to have a sufficiently extended preheat time to ensure an even temperature across the host PWB and it is also recommended to minimize the time in reflow.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board, since cleaning residues may affect long time reliability and isolation voltage.

Minimum Pin Temperature Recommendations

Pin number 5 chosen as reference location for the minimum pin temperature recommendation since this will likely be the coolest solder joint during the reflow process.

SnPb solder processes

For SnPb solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature, (T_L, 183°C for Sn63Pb37) for more than 60 seconds and a peak temperature of 220°C is recommended to ensure a reliable solder joint.

For dry packed products only: depending on the type of solder paste and flux system used on the host board, up to a recommended maximum temperature of 245°C could be used, if the products are kept in a controlled environment (dry pack handling and storage) prior to assembly.

Technical Specification

SnPb eutectic

<table>
<thead>
<tr>
<th>General reflow process specifications</th>
<th>SnPb eutectic</th>
<th>Pb-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average ramp-up (T_{PRODUCT})</td>
<td>3°C/s max</td>
<td>3°C/s max</td>
</tr>
<tr>
<td>Typical solder melting (liquidus) temperature T_L</td>
<td>183°C</td>
<td>221°C</td>
</tr>
<tr>
<td>Minimum reflow time above T_L</td>
<td>60 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Minimum pin temperature T_{PIN}</td>
<td>210°C</td>
<td>235°C</td>
</tr>
<tr>
<td>Peak product temperature T_{PRODUCT}</td>
<td>225°C</td>
<td>260°C</td>
</tr>
<tr>
<td>Average ramp-down (T_{PRODUCT})</td>
<td>6°C/s max</td>
<td>6°C/s max</td>
</tr>
<tr>
<td>Maximum time 25°C to peak</td>
<td>6 minutes</td>
<td>8 minutes</td>
</tr>
</tbody>
</table>

Minimum Pin Temperature

Top of the product PWB near pin 2 is chosen as reference location for the maximum (peak) allowed product temperature (T_{PRODUCT}) since this will likely be the warmest part of the product during the reflow process.

For Pb-free solder processes, the product is qualified for MSL 1 according to IPC/JEDEC standard J-STD-020C.

During reflow T_{PRODUCT} must not exceed 225 °C at any time.

For Pb-free solder processes, the product is qualified for MSL 3 according to IPC/JEDEC standard J-STD-020C.

During reflow T_{PRODUCT} must not exceed 260 °C at any time.

Dry Pack Information

Products intended for Pb-free reflow soldering processes are delivered in standard moisture barrier bags according to IPC/JEDEC standard.

Using products in high temperature Pb-free soldering processes requires dry pack storage and handling. In case the products have been stored in an uncontrolled environment and no longer can be considered dry, the modules must be baked according to J-STD-033.

Thermocoupler Attachment

Pin 5 for measurement of minimum pin (solder joint) temperature, T_{PIN}
Delivery Package Information

The products are delivered in antistatic blister PS trays

<table>
<thead>
<tr>
<th>Tray Specifications – Pin in Paste Assembly Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surface resistance</td>
</tr>
<tr>
<td>Bakability</td>
</tr>
<tr>
<td>Tray thickness</td>
</tr>
<tr>
<td>Box capacity</td>
</tr>
<tr>
<td>Tray weight</td>
</tr>
</tbody>
</table>

All dimensions in mm [inch]

Tolerances: $X.x \pm 0.26$ [0.01], $X.xx \pm 0.13$ [0.005]

Note: The tray is not designed for machine pick up
Technical Specification

PKM4713NH Fully Regulated DC-DC Converters
Input 40-60V, Output up to 58.3 A / 700 W
28701-BMR66905 R1A September 2018
© Flex

Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>IPC-A-610</th>
</tr>
</thead>
<tbody>
<tr>
<td>External visual inspection</td>
<td></td>
</tr>
</tbody>
</table>
| Change of temperature (Temperature cycling) | IEC 60068-2-14 Na
Temperature range
Number of cycles
Dwell/transfer time | -40 to 100°C
500
15 min/0-1 min |
| Cold (in operation) | IEC 60068-2-1 Ad
Temperature Tₐ
Duration | -45°C
72 h |
| Damp heat | IEC 60068-2-67 Cy
Temperature
Humidity
Duration | 85°C
85 % RH
1000 hours |
| Dry heat | IEC 60068-2-2 Bd
Temperature
Duration | 125°C
1000 h |
| Electrostatic discharge susceptibility | IEC 61340-3-1, JESD 22-A114
IEC 61340-3-2, JESD 22-A115
Human body model (HBM)
Machine Model (MM) | Class 2, 2000 V
Class 3, 200 V |
| Immersion in cleaning solvents | IEC 60068-2-45 XA, method 2
Water
Glycol ether
Isopropyl alcohol | 55°C
35°C
35°C |
| Mechanical shock | IEC 60068-2-27 Ea
Peak acceleration
Duration | 100 g
6 ms |
| Moisture reflow sensitivity | J-STD-020C
Level 1 (SnPb-eutectic)
Level 3 (Pb Free) | 225°C
260°C |
| Operational life test | MIL-STD-202G, method 108A
Duration | 1000 h |
| Robustness of terminations | IEC 60068-2-21 Test Ua1
IEC 60068-2-21 Test Ue1
Through hole mount products
Surface mount products | All leads
All leads |
| Solderability | IEC 60068-2-58 test Td
Preconditioning
Temperature, SnPb Eutectic
Temperature, Pb-free | 150°C dry bake 16 h
215°C
235°C |
| Vibration, broad band random | IEC 60068-2-64 Fh, method 1
Frequency
Spectral density
Duration | 10 to 500 Hz
0.07 g²/Hz
10 min in each direction |