PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

Key Features

- Industry standard case dimensions

 57.91 x 36.8 x 12.7 mm (2.28 x 1.45 x 0.5 in)
- High efficiency, typ. 89% at 24 Vout Full load
- 3000 Vdc input to output isolation
- Meets requirements according to IEC/EN/UL 60950-1
- MTBF 4 Mh
- Compliant to EN50155

General Characteristics

- Output over voltage protection
- Input under voltage shutdown
- Over temperature protection
- Monotonic startup
- Output short-circuit protection
- Remote control
- Output voltage adjust function
- ISO 9001/14001 certified supplier

Contents

- Ordering Information ... 2
- General Information ... 2
- Safety Specification ... 3
- Absolute Maximum Ratings .. 4
- Electrical Specification .. 5
 - 5V, 20A / 100W
 - 12V, 8.3A / 100W
 - 15V, 6.67A / 100W
 - 24V, 4.16A / 100W
 - 48V, 2.08A / 100W
 - 12V, 12.5A / 150W
 - 15V, 10A / 150W
 - 24V, 6.25A / 150W
- EMC Specification ... 26
- Operating Information .. 29
- Thermal Consideration .. 30
- Connections ... 32
- Mechanical Information .. 33
- Soldering Information .. 34
- Delivery Information .. 35
- Product Qualification Specification ... 39

Safety Approvals

- UL

Design for Environment

- RoHS compatible

 Meets requirements in high-temperature lead-free soldering processes.

© Flex

Technical Specification

28701-BMR 711 Rev. D

March 2018
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKM 7111A PIP</td>
<td>5V, 20A / 100 W</td>
</tr>
<tr>
<td>PKM 7113A PIP</td>
<td>12V, 8.3A / 100 W</td>
</tr>
<tr>
<td>PKM 7115A PIP</td>
<td>15V, 6.67A / 100 W</td>
</tr>
<tr>
<td>PKM 7116ZA PIP</td>
<td>24V, 4.16A / 100 W</td>
</tr>
<tr>
<td>PKM 7116JA PIP</td>
<td>48V, 2.08A / 100 W</td>
</tr>
<tr>
<td>PKM 7213A PIP</td>
<td>12V, 12.5A / 150 W</td>
</tr>
<tr>
<td>PKM 7215A PIP</td>
<td>15V, 10A / 150 W</td>
</tr>
<tr>
<td>PKM 7216ZA PIP</td>
<td>24V, 6.25A / 150 W</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>Options</th>
<th>PKM7XXXX n1 n2 n3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting</td>
<td>o</td>
</tr>
<tr>
<td>Remote Control logic</td>
<td>o</td>
</tr>
<tr>
<td>Baseplate</td>
<td>o</td>
</tr>
</tbody>
</table>

Options Description

<table>
<thead>
<tr>
<th>n1</th>
<th>PI</th>
<th>Through hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>n2</td>
<td>P</td>
<td>Positive</td>
</tr>
<tr>
<td>n3</td>
<td>LHS</td>
<td>No heat sink</td>
</tr>
<tr>
<td></td>
<td>LHS</td>
<td>10 mm 1/4” heat sink (100W)</td>
</tr>
<tr>
<td></td>
<td>HS</td>
<td>20 mm 1/2” heat sink (150W)</td>
</tr>
</tbody>
</table>

Example a 150W through-hole mounted, positive logic, nominal pin length
Product with 20mm 1/2” baseplate would be PKM7216ZAPIPHS

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF = 1/λ) is calculated at max output power and an operating ambient temperature (Ta) of +25°C. Flex uses Telcordia SR-332 Issue 3 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 3 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure rate, λ</th>
<th>Std deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>237 nFailures/h</td>
<td>107 nFailures/h</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKM XXX series = 4 Mh.
MTBF at 90% confidence level = 3.6 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2017

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
Safety Specification

General information

Flex DC/DC converters and DC/DC regulators are designed in accordance with the safety standards IEC 60950-1, EN 60950-1 and UL 60950-1 Safety of Information Technology Equipment.

IEC/EN/UL 60950-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC/DC converters and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without “conditions of acceptability”. Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information and Safety Certificate for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use should comply with the requirements in IEC/EN/UL 60950-1 Safety of Information Technology Equipment. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/EN/UL 60950-1 with regards to safety.

Flex DC/DC converters, Power interface modules and DC/DC regulators are UL 60950-1 recognized and certified in accordance with EN 60950-1. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, Fire hazard testing, test flames – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters & Power interface modules

The product may provide basic or functional insulation between input and output according to IEC/EN/UL 60950-1 (see Safety Certificate), different conditions shall be met if the output of a basic or a functional insulated product shall be considered as safety extra low voltage (SELV).

For basic insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides functional or basic insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 60950-1.

For functional insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides basic or supplementary insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 60950-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/EN/UL 60950-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage (V_{iso}) meets the voltage strength requirement for basic insulation according to IEC/EN/UL 60950-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{P1} Operating Temperature</td>
<td>-40</td>
<td>+115</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{S} Storage temperature</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>V_i Input voltage</td>
<td>0</td>
<td>200</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_{out} Output capacitance</td>
<td>0</td>
<td>5000</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>V_{iso} Isolation voltage (input to output)</td>
<td>3000</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{iso} Isolation voltage (input to baseplate)</td>
<td>2000</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{iso} Isolation voltage (baseplate to output)</td>
<td>1000</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_s Input voltage transient</td>
<td>200</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{adj} Adjust pin voltage</td>
<td>0</td>
<td>1.15V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{RC} Remote Control pin voltage</td>
<td>0</td>
<td></td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td>(see Operating Information section)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive logic option</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative logic option</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the Electrical Specification section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fundamental Circuit Diagram

[Diagram of PKM 7000A series Direct Converters]
PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

Electrical Specification

PKM 7111A PIP

5 V, 20 A / 100 W

\(T_{IP} = -40 \) to 105°C, \(V_i = 66 \) to 160 V, \{sense pins connected to output pins\} unless otherwise specified under Conditions.

Typical values given at: \(T_{IP} = +25^\circ\text{C} \), \(V_i = 110 \) V, max \(I_o \), unless otherwise specified under Conditions.

Additional \(C_{in} = 47 \) \(\mu \)F, \(C_{out} = 10 \) \(\mu \)F ceramic Cap. + 22 \(\mu \)F E-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i)</td>
<td>Input voltage range</td>
<td>66</td>
<td>160</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{out})</td>
<td>Turn-off input voltage</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>(V_{on})</td>
<td>Turn-on input voltage</td>
<td>62</td>
<td>64</td>
<td>66</td>
<td>V</td>
</tr>
<tr>
<td>(C_i)</td>
<td>Internal input capacitance</td>
<td>47</td>
<td>(\mu)F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_o)</td>
<td>Output power</td>
<td>0</td>
<td>100</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efficiency</td>
<td>50% %</td>
<td>(\mu)F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_s)</td>
<td>Power Dissipation</td>
<td>max (I_o)</td>
<td>15</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>(P_{id})</td>
<td>Input idling power</td>
<td>(I_o = 0) A</td>
<td>1.0</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(P_{RC})</td>
<td>Input standby power</td>
<td>(V_i = 110) V</td>
<td>0.7</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(f_s)</td>
<td>Switching frequency</td>
<td>0-100 % of max (I_o)</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
</tbody>
</table>

Technical Specification

28701-BMR 711 Rev. D March 2018

© Flex

PKM 7000A series Direct Converters

PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

28701-BMR 711 Rev. D March 2018

© Flex

Note 1: hiccup mode

Note 2: Test condition: Electronic Capacitor and full load
Typical Characteristics
5 V, 20 A / 100 W

Efficiency vs. load current and input voltage at +25°C.

Power Dissipation vs. load current and input voltage at +25°C.

Current Limit Characteristics
Output voltage vs. load current at Iₒ > max Iₒ at +25°C.

Output Current Derating (10mm ¼ brick heat sink)
Available load current vs. ambient air temperature and airflow at Vₒ=110 V. See Thermal Consideration section.

Output Current Derating (20mm ¼ brick heat sink)
Available load current vs. ambient air temperature and airflow at Vₒ=110 V. See Thermal Consideration section.
Typical Characteristics

5 V, 20 A / 100 W

Start-up

Start-up enabled by connecting V_i at:
- $T_{P1} = +25°C, V_i = 110 V, I_o = 20 A$ resistive load.

Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (50 ms/div.).

Shut-down

Start-up enabled by connecting V_i at:
- $T_{P1} = +25°C, V_i = 110 V, I_o = 20 A$ resistive load.

Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (1 s/div.).

Output Ripple & Noise

Output voltage ripple at:
- $T_{P1} = +25°C, V_i = 110 V, I_o = 20 A$ resistive load.

Trace: output voltage (100 mV/div.).
Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step-change (10-15-10 A) at:
- $T_{P1} = +25°C, V_i = 110 V.$

Trace: output voltage (200 mV/div.).
Bottom trace: load current (5 A/div.).
Time scale: (1 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

$$R_{\text{TRIM,UP}} = \left(\frac{5.11 \times V_{\text{out}} \times (100 + \Delta\%)}{1.225 \times \Delta\%} - \frac{511}{10.22}\right) \text{kΩ}$$

$$\Delta\% = \left(\frac{V_{\text{desired}} - V_{\text{out}}}{V_{\text{out}}}\right) \times 100$$

Output Voltage Adjust, Decrease:

$$R_{\text{TRIM,DOWN}} = \left(\frac{511}{\Delta\%} - 10.22\right) \text{kΩ}$$

$$\Delta\% = \left(\frac{V_{\text{out}} - V_{\text{desired}}}{V_{\text{out}}}\right) \times 100$$

Example:

To trim up the 5.0V model by 8% to 5.4V the required external resistor is:

$$R_{\text{TRIM,UP}} = \left(\frac{5.11 \times 5.0 \times (100 + 8)}{1.225 \times 8} - \frac{511}{10.22}\right) = 207.48 \text{kΩ}$$

$$\Delta\% = \left(\frac{5.4 - 5.0}{5.0}\right) \times 100 = 8$$

Example:

To trim down the 5.0V model by 7% to 4.65V the required external resistor is:

$$R_{\text{TRIM,DOWN}} = \left(\frac{511}{7} - 10.22\right) = 62.78 \text{ kΩ}$$

Output Voltage=5.0V
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Electrical Specification
12 V, 8.3 A / 100 W

TP1 = -40 to 105°C, VI = 66 to 160 V, (sense pins connected to output pins) unless otherwise specified under Conditions.

Typical values given at: TP1 = +25°C, VI = 110 V, max IO, unless otherwise specified under Conditions.

Additional Cin = 47 µF, Cout = 10 µF ceramic Cap. + 22 µF E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Input voltage range</td>
<td>66</td>
<td>160</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VS</td>
<td>Turn-off input voltage</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>VS</td>
<td>Increasing input voltage</td>
<td>62</td>
<td>64</td>
<td>66</td>
<td>V</td>
</tr>
<tr>
<td>VT</td>
<td>Internal input capacitance</td>
<td></td>
<td></td>
<td>47</td>
<td>µF</td>
</tr>
<tr>
<td>P0</td>
<td>Output power</td>
<td>0</td>
<td>100</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>rη</td>
<td>Efficiency</td>
<td>50%</td>
<td>87</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>rP</td>
<td>Power Dissipation</td>
<td>max</td>
<td>11</td>
<td>15</td>
<td>W</td>
</tr>
<tr>
<td>P1</td>
<td>Input idling power</td>
<td>IO</td>
<td>0</td>
<td>1.0</td>
<td>W</td>
</tr>
<tr>
<td>PRC</td>
<td>Input standby power</td>
<td>V1</td>
<td>110</td>
<td>0.7</td>
<td>W</td>
</tr>
<tr>
<td>f0</td>
<td>Switching frequency</td>
<td>238</td>
<td>280</td>
<td>322</td>
<td>kHz</td>
</tr>
</tbody>
</table>

Note 1: hiccup mode
Note 2: Test condition: Electronic Capacitor and full load
PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

Typical Characteristics

12 V, 8.3 A / 100 W

Efficiency

![Efficiency vs. load current and input voltage at +25°C.](image1)

Current Limit Characteristics

![Output voltage vs. load current at I_o > max I_o at +25°C.](image2)

Output Current Derating (10mm ¼ brick heat sink)

![Available load current vs. ambient air temperature and airflow at V_i=110 V. See Thermal Consideration section.](image3)

Power Dissipation

![Dissipated power vs. load current and input voltage at +25°C.](image4)

Output Current Derating (20mm ¼ brick heat sink)

![Available load current vs. ambient air temperature and airflow at V_i=110 V. See Thermal Consideration section.](image5)
Typical Characteristics

12 V, 8.3 A / 100 W

Start-up

Start-up enabled by connecting \(V_i \) at:
\(T_P1 = +25°C, V_i = 110 \text{ V}, \) \(I_o = 8.3 \text{ A} \) resistive load.
Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (50 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
\(T_P1 = +25°C, V_i = 110 \text{ V}, \) \(I_o = 8.3 \text{ A} \) resistive load.
Trace: output voltage (50 mV/div.).
Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step change (4.15-6.225-4.15 A) at:
\(T_P1 = +25°C, V_i = 110 \text{ V} \).
Trace: output voltage (500 mV/div.).
Bottom trace: load current (5 A/div.).
Time scale: (1 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[
R_{TRIM_UP} = \left(\frac{5.11 \times V_{o,_nom} \times (100 + \Delta\%)}{1.225 \times \Delta\%} - 10.22 \right) \text{kΩ}
\]

\[
\Delta\% = \left(\frac{V_{_desired} - V_{o,_nom}}{V_{o,_nom}} \right) \times 100
\]

Output Voltage Adjust, Decrease:

\[
R_{TRIM_DOWN} = \left(\frac{5.11}{\Delta\%} - 10.22 \right) \text{kΩ}
\]

\[
\Delta\% = \left(\frac{V_{o,_nom} - V_{_desired}}{V_{o,_nom}} \right) \times 100
\]

Output Voltage = 12V

Example:

To trim up the 12V model by 8% to 12.96V the required external resistor is:

\[
R_{TRIM_UP} = \left(\frac{5.11 \times 12 \times (100 + 8)}{1.225 \times 8} - 10.22 \right) = 601.68 \text{kΩ}
\]

\[
\Delta\% = \left(\frac{12.96 - 12}{12} \right) \times 100 = 8
\]

Example:

To trim down the 12V model by 7% to 11.16V the required external resistor is:

\[
R_{TRIM_DOWN} = \left(\frac{5.11}{7} - 10.22 \right) = 62.78 \text{ kΩ}
\]
PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

Electrical Specification

15 V, 6.67 A / 100 W

- $T_{p1} = -40$ to 105°C, $V_i = 66$ to 160 V, {sense pins connected to output pins} unless otherwise specified under Conditions.
- Typical values given at: $T_{p1} = +25°C$, $V_i = 110$ V, max I_o, unless otherwise specified under Conditions.
- Additional $C_{in} = 47$ µF, $C_{out} = 10$ µF ceramic Cap. + 22 µF E-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>66</td>
<td>160</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>60</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>47</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_0</td>
<td>Output power</td>
<td>0</td>
<td>100</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_o, $V_i = 110$ V</td>
<td>87</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, $V_i = 110$ V</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_D</td>
<td>Power Dissipation</td>
<td>I_o</td>
<td>11</td>
<td>25</td>
<td>W</td>
</tr>
<tr>
<td>P_{id}</td>
<td>Input idling power</td>
<td>$I_o = 0$, $V_i = 110$ V</td>
<td>1.0</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_{RC}</td>
<td>Input standby power</td>
<td>$V_i = 110$ V (turned off with RC)</td>
<td>0.7</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>0-100 % of max I_o</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
</tbody>
</table>

Technical Specification

- **PKM 7115A PIP**

- **Input 66-160 V, Output up to 12.5 A / 150 W**

Note 1: hiccup mode

Note 2: Test condition: Electronic Capacitor and full load
Typical Characteristics
15 V, 6.67 A / 100 W

Efficiency

![Efficiency vs. load current and input voltage at +25°C.](image)

Power Dissipation

![Dissipated power vs. load current and input voltage at +25°C.](image)

Current Limit Characteristics

![Output voltage vs. load current at I_O > max I_O at +25°C.](image)

Output Current Derating (10mm ¼ brick heat sink)

![Available load current vs. ambient air temperature and airflow at V_I=110 V. See Thermal Consideration section.](image)

Output Current Derating (20mm ¼ brick heat sink)

![Available load current vs. ambient air temperature and airflow at V_I=110 V. See Thermal Consideration section.](image)
Typical Characteristics

15 V, 6.67 A / 100 W

Start-up

Start-up enabled by connecting V_{i} at:

- $T_{p1} = +25^\circ C$, $V_{i} = 110 V$, $I_{o} = 6.67 A$ resistive load.

Top trace: output voltage (5 V/div.).

Bottom trace: input voltage (50 V/div.).

Time scale: (200 ms/div.).

Shut-down

Start-up enabled by connecting V_{i} at:

- $T_{p1} = +25^\circ C$, $V_{i} = 110 V$, $I_{o} = 6.67 A$ resistive load.

Top trace: output voltage (5 V/div.).

Bottom trace: input voltage (50 V/div.).

Time scale: (500 ms/div.).

Output Ripple & Noise

Output voltage ripple at:

- $T_{p1} = +25^\circ C$, $V_{i} = 110 V$, $I_{o} = 6.67 A$ resistive load.

Trace: output voltage (50 mV/div.).

Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step-change (3.335-5.003-3.335 A) at:

- $T_{p1} = +25^\circ C$, $V_{i} = 110 V$.

Trace: output voltage (500 mV/div.).

Bottom trace: load current (2 A/div.).

Time scale: (1 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[
R_{\text{TRIM,UP}} = \left(\frac{5.11 \times V_{\text{out,adj}} \times (100 + \Delta \%)}{1.225 \times \Delta \%} - 10.22 \right) \text{kΩ}
\]

\[
\Delta \% = \left(\frac{V_{\text{adj}} - V_{\text{out,adj}}}{V_{\text{out,adj}}} \right) \times 100
\]

Output Voltage Adjust, Decrease:

\[
R_{\text{TRIM,DOWN}} = \left(\frac{511}{\Delta \%} - 10.22 \right) \text{kΩ}
\]

\[
\Delta \% = \left(\frac{V_{\text{out,adj}} - V_{\text{adj}}}{V_{\text{out,adj}}} \right) \times 100
\]

Output Voltage = 15V

Example:

To trim up the 15V model by 8% to 16.2V the required external resistor is:

\[
R_{\text{TRIM_UP}} = \left(\frac{5.11 \times 15 \times (100 + 8)}{1.225 \times 8} - \frac{511}{8} - 10.22 \right) = 770.62 \text{kΩ}
\]

\[
\Delta \% = \left(\frac{16.2 - 15}{15} \right) \times 100 = 8
\]

Example:

To trim down the 15V model by 7% to 13.95V the required external resistor is:

\[
R_{\text{TRIM_DOWN}} = \left(\frac{511}{7} - 10.22 \right) = 62.78 \text{kΩ}
\]
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Electrical Specification
24 V, 4.16 A / 100 W

$T_{PI} = 40$ to 105°C, $V_{i} = 66$ to 160 V, (sense pins connected to output pins) unless otherwise specified under Conditions.
Typical values given at: $T_{PI} = +25^\circ$C, $V_{i} = 110$ V, max I_{O}, unless otherwise specified under Conditions.
Additional Cin = 47 µF, Cout = 10 µF ceramic Cap. + 22 µF E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{I}</td>
<td>Input voltage range</td>
<td>66</td>
<td>160</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>60</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>C_{i}</td>
<td>Internal input capacitance</td>
<td>47</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{O}</td>
<td>Output power</td>
<td>0</td>
<td>100</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_{O}</td>
<td>87</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation</td>
<td>max I_{O}</td>
<td>13</td>
<td>17</td>
<td>W</td>
</tr>
<tr>
<td>P_{I}</td>
<td>Input idling power</td>
<td>$I_{O} = 0$ A, $V_{i} = 110$ V</td>
<td>1.0</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_{RC}</td>
<td>Input standby power</td>
<td>$V_{i} = 110$ V (turned off with RC)</td>
<td>0.7</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>f_{0}</td>
<td>Switching frequency</td>
<td>0-100 % of max I_{O}</td>
<td>297.5</td>
<td>402.5</td>
<td>kHz</td>
</tr>
</tbody>
</table>

V_{O}	Output voltage initial setting and accuracy	$T_{PI} = +25^\circ$C, $V_{i} = 110$ V, $I_{O} = 4.16$ A	23.70	24	24.30	V
V_{O}	Output adjust range	See operating information	21.6	24	26.4	V
V_{O}	Output voltage tolerance band	0-100% of max I_{O}	23.4	24.6	V	
I_{O}	Idling voltage	$I_{O} = 0$ A	23.4	24.6	V	
I_{O}	Line regulation	max I_{O}	10	120	mV	
I_{O}	Load regulation	$V_{i} = 110$ V, 25-100% of max I_{O}	20	240	mV	
I_{O}	Load transient voltage deviation	$V_{i} = 110$ V, Load step 50-75-50% of max I_{O}, $dI/dt = 100$mA/µs	± 377	± 1000	mV	
I_{O}	Load transient recovery time	I_{O}	70	500	µs	
I_{O}	Ramp-up time (from 10-90% of V_{O})	100% of max I_{O}	15	ms		
I_{O}	Start-up time (from V_{i} connection to 90% of V_{O})	max I_{O}	60	ms		
f_{RC}	RC start-up time (from V_{O} connection to 90% of V_{O})	max I_{O}	1.5	10	ms	
I_{O}	Sink current	See operating information	10	mA		
I_{O}	Trigger level	Decreasing / Increasing RC-voltage	0.8/2.5	V		
I_{O}	Output current	0	4.16	A		
I_{O}	Current limit threshold	$V_{i} = 110$ V, $T_{PI} < max T_{PI}$	9	11	A	
I_{O}	Short circuit current	$T_{PI} = 25^\circ$C, see Note 1	0.04	0.1	A	
C_{out}	Recommended Capacitive Load	$T_{PI} = 25^\circ$C, see Note 2	0	2000	µF	
V_{Oac}	Output ripple & noise	See ripple & noise section, V_{O}	30.7	500	mVp-p	
OVP	Over voltage protection	$T_{PI} = +25^\circ$C, $V_{i} = 110$ V, 0-100% of max I_{O}	28	V		

Note 1: hiccup mode
Note 2: Test condition: Electronic Capacitor and full load
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Typical Characteristics
24 V, 4.16 A / 100 W

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at +25°C.

Power Dissipation

![Power Dissipation graph](image)

Dissipated power vs. load current and input voltage at +25°C.

Current Limit Characteristics

![Current Limit Characteristics graph](image)

Output voltage vs. load current at $I_o > max I_o$ at +25°C.

Output Current Derating (10mm ¼ brick heat sink)

![Output Current Derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_i=110$ V. See Thermal Consideration section.

Output Current Derating (20mm ¼ brick heat sink)

![Output Current Derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_i=110$ V. See Thermal Consideration section.
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Typical Characteristics
24 V, 4.16 A / 100 W

Start-up

Start-up enabled by connecting V_i at:

$T_P = +25°C$, $V_i = 110 V$,
$I_O = 4.16$ A resistive load.

Top trace: output voltage (10 V/div.).
Bottom trace: input voltage (50 V/div.).

Time scale: (20 ms/div.).

Output Ripple & Noise

Output Voltage Adjust (see operating information)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

$$R_{ADJ_UP} = \left(\frac{14.6061}{\Delta} - 120 \right) \text{k}\Omega$$

Output Voltage Adjust, Decrease:

$$R_{ADJ_DOWN} = \left(\frac{17.2133}{\Delta} - 151.819 \right) \text{k}\Omega$$

Example:

To trim up the 24V model by 8% to 25.92V the required external resistor is:

$$R_{ADJ_UP} = \left(\frac{14.6061}{0.08} - 120 \right) = 62.58 \text{k}\Omega$$

Example:

To trim down the 24V model by 7% to 22.32V the required external resistor is:

$$R_{ADJ_DOWN} = \left(\frac{17.2133}{0.07} - 151.819 \right) = 94.08 \text{k}\Omega$$

PKM 7116ZA PIP

Output Load Transient Response

Output Voltage=24V

Output Voltage (20 mV/div.).
Time scale: (5 µs/div.).

Trace: output voltage to load current step-change (2.08-3.12-2.08 A) at:

Bottom trace: load current (1 A/div.).
Time scale: (1 ms/div.).
PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

Electrical Specification

PKM 7116JA PIP

48 V, 2.08 A / 100 W

$T_{pr} = -40$ to 105°C, $V_i = 66$ to 160 V, (sense pins connected to output pins) unless otherwise specified under Conditions.

Typical values given at: $T_{pr} = +25°C$, $V_i = 110 V$, max I_o, unless otherwise specified under Conditions.

Additional $C_{in} = 47 \mu F$, $C_{out} = 10 \mu F$ ceramic Cap. + 22 µF E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>66</td>
<td>60</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Turn-off input voltage</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>V_{ton}</td>
<td>Turn-on input voltage</td>
<td>62</td>
<td>64</td>
<td>66</td>
<td>V</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>47</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>0</td>
<td>100</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50%</td>
<td>87</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td>P_{D}</td>
<td>Power Dissipation</td>
<td>max I_o</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P_i</td>
<td>Input idling power</td>
<td>$I_o = 0$ A, $V_i = 110$ V</td>
<td>1.0</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P_{RC}</td>
<td>Input standby power</td>
<td>$V_i = 110$ V (turned off with RC)</td>
<td>0.7</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>t_s</td>
<td>Switching frequency</td>
<td>0-100% of max I_o</td>
<td>297.5</td>
<td>350</td>
<td>402.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V_{O}</th>
<th>Output voltage initial setting and accuracy</th>
<th>$T_{pr} = +25°C$, $V_i = 110$ V, $I_o = 6.25$ A</th>
<th>47.4</th>
<th>48</th>
<th>48.6</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output adjust range</td>
<td>See operating information</td>
<td>43.2</td>
<td>48</td>
<td>52.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>0-100% of max I_o</td>
<td>46.8</td>
<td>49.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Idling voltage</td>
<td>$I_o = 0$ A</td>
<td>46.8</td>
<td>49.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>max I_o</td>
<td>24</td>
<td>240</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>$V_i = 110$ V, 25-100% of max I_o</td>
<td>48</td>
<td>480</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_o</td>
<td>Load transient voltage deviation</td>
<td>$V_i = 110$ V, Load step 50-75-50% of max I_o, $di/dt = 100mA/µs$</td>
<td>±800</td>
<td>±1000</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>I_o Load transient recovery time</td>
<td>90</td>
<td>500</td>
<td></td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_r Ramp-up time (from 10-90% of V_o)</td>
<td>15</td>
<td></td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_s Start-up time (from V_i, connection to 90% of V_o)</td>
<td>60</td>
<td></td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>t_{RC} RC start-up time (from V_{in}, connection to 90% of V_o)</td>
<td>max I_o</td>
<td>1.55</td>
<td>10</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>RC</td>
<td>Sink current</td>
<td>See operating information</td>
<td>10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Trigger level</td>
<td>Decreasing / Increasing RC-voltage</td>
<td>0.8/2.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>I_o Output current</td>
<td>0</td>
<td>2.08</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{lim} Current limit threshold</td>
<td>$V_i = 110$ V, $T_{pr} < max T_{pr}$</td>
<td>3.2</td>
<td>5.2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>I_{sc} Short circuit current</td>
<td>$T_{pr} = 25°C$, see Note 1</td>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>C_{out} Recommended Capacitive Load</td>
<td>$T_{pr} = 25°C$, see Note 2</td>
<td>0</td>
<td>500</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td></td>
<td>V_{ripple} Output ripple & noise</td>
<td>See ripple & noise section, V_o</td>
<td>272</td>
<td>500</td>
<td></td>
<td>mV-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td>$T_{pr} = +25°C$, $V_i = 110$ V, 0-100% of max I_o</td>
<td>55</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: hiccup mode

Note 2: Test condition: Electronic Capacitor and full load
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Typical Characteristics
48 V, 2.08 A / 100 W

Efficiency vs. load current and input voltage at +25°C.

Power Dissipation vs. load current and input voltage at +25°C.

Current Limit Characteristics

Output voltage vs. load current at I_o > max I_o at +25°C.

Output Current Derating
Available load current vs. ambient air temperature and airflow at V_i=110 V. See Thermal Consideration section.
Typical Characteristics

48 V, 2.08 A / 100 W

Start-up

Start-up enabled by connecting \(V_I \) at:
- \(T_{P1} = +25^\circ C \), \(V_I = 110 \text{ V} \)
- \(I_O = 2.08 \text{ A} \) resistive load.

Top trace: output voltage (20 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (200 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
- \(T_{P1} = +25^\circ C \), \(V_I = 110 \text{ V} \)
- \(I_O = 2.08 \text{ A} \) resistive load.

Trace: output voltage (100 mV/div.).
Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step change (1.04-1.56-1.04 A) at:
- \(T_{P1} = +25^\circ C \), \(V_I = 110 \text{ V} \)

Top trace: output voltage (2 V/div.).
Bottom trace: load current (1 A/div.).
Time scale: (10 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[
R_{ADJ_{UP}} = \left(\frac{29.2214}{\Delta} - 240 \right) \text{k} \Omega
\]

Output Voltage Adjust, Decrease:

\[
R_{ADJ_{DOWN}} = \left(\frac{34.4607}{\Delta} - 303.682 \right) \text{k} \Omega
\]

Example:

To trim up the 48V model by 8% to 51.84V the required external resistor is:

\[
R_{ADJ_{UP}} = \left(\frac{29.2214}{0.08} - 240 \right) = 125.27 \text{ k} \Omega
\]

Example:

To trim down the 48V model by 7% to 44.64V the required external resistor is:

\[
R_{ADJ_{DOWN}} = \left(\frac{34.4607}{0.07} - 303.682 \right) = 188.61 \text{ k} \Omega
\]
Electrical Specification

12 V, 12.5 A / 150 W

$T_{PI} = -40$ to $105^\circ C$, $V_i = 66$ to 160 V. (sense pins connected to output pins) unless otherwise specified under Conditions.

Typical values given at: $T_{PI} = +25^\circ C$, $V_i = 110$ V, I_o max, unless otherwise specified under Conditions.

Additional $C_{in} = 47 \mu F$, $C_{out} = 10 \mu F$ ceramic Cap. + $22 \mu F$ E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i Input voltage range</td>
<td></td>
<td>66</td>
<td>160</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{off} Turn-off input voltage Decreasing input voltage</td>
<td></td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>V_{on} Turn-on input voltage Increasing input voltage</td>
<td></td>
<td>62</td>
<td>64</td>
<td>66</td>
<td>V</td>
</tr>
<tr>
<td>C_i Internal input capacitance</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>μF</td>
</tr>
<tr>
<td>P_o Output power</td>
<td></td>
<td>0</td>
<td>150</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η Efficiency 50% of max I_o, $V_i = 110$ V</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max I_o, $V_i = 110$ V</td>
<td></td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{diss} Power Dissipation</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>P_i Input idling power $I_o = 0$ A, $V_i = 110$ V</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>P_{idling} Input standby power $V_i = 110$ V (turned off with RC)</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>t_s Switching frequency 0-100 % of max I_o</td>
<td></td>
<td>238</td>
<td>280</td>
<td>322</td>
<td>kHz</td>
</tr>
</tbody>
</table>

V_{iO} Output voltage initial setting and accuracy	$T_{PI} = +25^\circ C$, $V_i = 110$ V, $I_o = 12.5$ A	11.856	12	12.144	V	
V_o Output adjust range	See operating information	10.8	12	13.2	V	
Output voltage tolerance band 0-100% of max I_o		11.5		12.5	V	
Idling voltage $I_o = 0$ A		11.5		12.5	V	
Line regulation				10	60	mV
Load regulation $V_i = 110$ V, 25-100% of max I_o				20	120	mV
V_s Load regulation	$V_i = 110$ V, Load step 50-75-50% of max I_o, $di/dt = 100$mA/μs			600	1000	mV
t_o Load transient recovery time		70		500	μs	
t_r Ramp-up time (from 10-90% of V_o)				15		ms
t_s Start-up time (from V_i connection to 90% of V_o)				60		ms
t_{ec} RC start-up time (from V_o connection to 90% of V_o)		max I_o		1.55	10	ms
I_0 Output current	See operating information			10		mA
Trigger level	Decreasing / Increasing RC-voltage			0.8/2.5		V
I_{on} Current limit threshold $V_i = 110$ V,$T_{PI} < max T_{PI}$				16.5	20	A
I_{scc} Short circuit current $T_{PI} = 25^\circ C$, see Note 1				0.05	0.1	A
C_{out} Recommended Capacitive Load $T_{PI} = 25^\circ C$, see Note 2				0	2000	μF
V_{op} Output ripple & noise See ripple & noise section, V_o				17	150	mVp-p
OVP Over voltage protection $T_{PI} = +25^\circ C$, $V_i = 110$ V, 0-100% of max I_o				15		V

Note 1: hiccup mode

Note 2: Test condition: Electronic Capacitor and full load
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Typical Characteristics
12 V, 12.5 A / 150 W

Efficiency

![Efficiency vs. load current and input voltage at +25°C.](image)

Power Dissipation

![Dissipated power vs. load current and input voltage at +25°C.](image)

Current Limit Characteristics

![Output voltage vs. load current at I_o > max I_o at +25°C.](image)

Output Current Derating (20mm ¼ brick heat sink)

![Available load current vs. ambient air temperature and airflow at V_i=110 V. See Thermal Consideration section.](image)
Typical Characteristics
12 V, 12.5 A / 150 W

Start-up

Start-up enabled by connecting \(V_i \) at:
\(T_p = +25^\circ C, V_i = 110 \) V,
\(I_o = 12.5 \) A resistive load.

Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (50 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
\(T_p = +25^\circ C, V_i = 110 \) V,
\(I_o = 12.5 \) A resistive load.

Trace: output voltage (20 mV/div.).
Time scale: (5 μs/div.).

Output Load Transient Response

Output voltage response to load current step. Top trace: output voltage (500 mV/div.).
Bottom trace: load current (5 A/div.).
Time scale: (1 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[
R_{\text{TRIM,UP}} = \left(\frac{5.11 \times V_{\text{o,adj}} \times (100 + \Delta \%)}{1.225 \times \Delta \%} - \frac{511}{10.22} \right) k\Omega
\]

\[
\Delta \% = \left(\frac{V_{\text{desired}} - V_{\text{o,adj}}}{V_{\text{o,adj}}} \right) \times 100
\]

Output Voltage Adjust, Decrease:

\[
R_{\text{TRIM,DOWN}} = \left(\frac{5.11}{\Delta \%} - 10.22 \right) k\Omega
\]

\[
\Delta \% = \left(\frac{V_{\text{o,adj}} - V_{\text{desired}}}{V_{\text{o,adj}}} \right) \times 100
\]

Example:
To trim up the 12V model by 8% to 12.96V the required external resistor is:

\[
R_{\text{TRIM,UP}} = \left(\frac{5.11 \times 12 \times (100 + 8)}{1.225 \times 8} - \frac{511}{10.22} \right) = 601.68 \text{ k}\Omega
\]

\[
\Delta \% = \left(\frac{12.96 - 12}{12} \right) \times 100 = 8
\]

Example:
To trim down the 12V model by 7% to 11.16V the required external resistor is:

\[
R_{\text{TRIM,DOWN}} = \left(\frac{5.11}{7} - 10.22 \right) = 62.78 \text{ k}\Omega
\]

PKM 7213A PIP

Shut-down

Shut-down enabled by disconnecting \(V_i \) at:
\(T_p = +25^\circ C, V_i = 110 \) V,
\(I_o = 12.5 \) A resistive load.

Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (500 ms/div.).

Output Voltage=12V

Example:
To trim up the 12V model by 8% to 12.96V the required external resistor is:

\[
R_{\text{TRIM,UP}} = \left(\frac{5.11 \times 12 \times (100 + 8)}{1.225 \times 8} - \frac{511}{10.22} \right) = 601.68 \text{ k}\Omega
\]

\[
\Delta \% = \left(\frac{12.96 - 12}{12} \right) \times 100 = 8
\]

Example:
To trim down the 12V model by 7% to 11.16V the required external resistor is:

\[
R_{\text{TRIM,DOWN}} = \left(\frac{5.11}{7} - 10.22 \right) = 62.78 \text{ k}\Omega
\]
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

PKM 7215A PIP

Electrical Specification
15 V, 10 A / 150 W

T_P1 = -40 to 105°C, V_i = 66 to 160 V, (sense pins connected to output pins) unless otherwise specified under Conditions. Technical values given at: T_P1 = +25°C, V_i = 110 V, max I_o, unless otherwise specified under Conditions. Additional Cin = 47 μF, Cout = 10 μF ceramic Cap. + 22 μF E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>66</td>
<td>160</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_off</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>60</td>
<td>62</td>
<td>64</td>
</tr>
<tr>
<td>V_on</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>62</td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>47</td>
<td>μF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_1</td>
<td>Output power</td>
<td>0</td>
<td>150</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_o, V_i = 110 V</td>
<td>89</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, V_i = 110 V</td>
<td>90</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>Power Dissipation</td>
<td>max I_o</td>
<td>16</td>
<td>30</td>
<td>W</td>
</tr>
<tr>
<td>P_i</td>
<td>Input idling power</td>
<td>I_o = 0 A, V_i = 110 V</td>
<td>1.0</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_PIC</td>
<td>Input standby power</td>
<td>V_i = 110 V (turned off with RC)</td>
<td>0.7</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>0-100 % of max I_o</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
<tr>
<td>V_D1</td>
<td>Output voltage initial setting and accuracy</td>
<td>T_P1 = +25°C, V_i = 110 V, I_o = 10 A</td>
<td>14.82</td>
<td>15</td>
<td>15.18</td>
</tr>
<tr>
<td>V_D2</td>
<td>Output adjust range</td>
<td>See operating information</td>
<td>13.5</td>
<td>15</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>0-100% of max I_o</td>
<td>14.5</td>
<td>15.5</td>
<td>V</td>
</tr>
<tr>
<td>V_D3</td>
<td>Idling voltage</td>
<td>I_o = 0 A</td>
<td>14.5</td>
<td>15.5</td>
<td>V</td>
</tr>
<tr>
<td>V_D5</td>
<td>Line regulation</td>
<td>max I_o</td>
<td>15</td>
<td>75</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>V_i = 110 V, 25-100% of max I_o</td>
<td>25</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>V_D6</td>
<td>Load transient voltage deviation</td>
<td>V_i = 110 V, Load step 50-75-50% of max I_o, di/dt = 100mA/μs</td>
<td>±400</td>
<td>±1000</td>
<td>mV</td>
</tr>
<tr>
<td>V_D7</td>
<td>Load transient recovery time</td>
<td>I_o</td>
<td>90</td>
<td>500</td>
<td>μs</td>
</tr>
<tr>
<td>V_D8</td>
<td>Ramp-up time (from 10-90% of V_D3)</td>
<td>100% of max I_o</td>
<td>15</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>V_D9</td>
<td>Start-up time (from V_i connection to 90% of V_D3)</td>
<td>max I_o</td>
<td>60</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>V_D10</td>
<td>RC start-up time (from V_i connection to 90% of V_D3)</td>
<td>max I_o</td>
<td>1.55</td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>RC</td>
<td>Sink current</td>
<td>See operating information</td>
<td>10</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trigger level</td>
<td>Decreasing / Increasing RC-voltage</td>
<td>0.8/2.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_o</td>
<td>Output current</td>
<td>0</td>
<td>10</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_lmin</td>
<td>Current limit threshold</td>
<td>V_i = 110 V, T_P1 < max T_P1</td>
<td>15</td>
<td>18</td>
<td>A</td>
</tr>
<tr>
<td>I_lsc</td>
<td>Short circuit current</td>
<td>T_P1 = 25°C, see Note 1</td>
<td>0.05</td>
<td>0.1</td>
<td>A</td>
</tr>
<tr>
<td>C_our</td>
<td>Recommended Capacitive Load</td>
<td>T_P1 = 25°C, see Note 2</td>
<td>0</td>
<td>2000</td>
<td>μF</td>
</tr>
<tr>
<td>V_D11</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, V_D3</td>
<td>43</td>
<td>150</td>
<td>mVP-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td>T_P1 = +25°C, V_i = 110 V, 0-100% of max I_o</td>
<td>18</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: hiccup mode
Note 2: Test condition: Electronic Capacitor and full load
Typical Characteristics
15 V, 10 A / 150 W

Efficiency

Efficiency vs. load current and input voltage at +25°C.

Power Dissipation

Dissipated power vs. load current and input voltage at +25°C.

Current Limit Characteristics

Output voltage vs. load current at I_o > max I_o at +25°C.

Output Current Derating (20mm ¼ brick heat sink)

Available load current vs. ambient air temperature and airflow at V_I=110 V. See Thermal Consideration section.

Output Current Derating (20mm ½ brick heat sink)

Available load current vs. ambient air temperature and airflow at V_I=110 V. See Thermal Consideration section.
Typical Characteristics

15 V, 10 A / 150 W

Start-up

Start-up enabled by connecting V_i at:

\[T_P1 = +25^\circ C, V_I = 110 V, \]

\[I_O = 10 A \text{ resistive load}. \]

Top trace: output voltage (5 V/div.).

Bottom trace: input voltage (50 V/div.).

Time scale: (100 ms/div.).

Shut-down

Shut-down enabled by disconnecting V_i at:

\[T_P1 = +25^\circ C, V_I = 110 V, \]

\[I_O = 10 A \text{ resistive load}. \]

Top trace: output voltage (5 V/div.).

Bottom trace: input voltage (50 V/div.).

Time scale: (500 ms/div.).

Output Ripple & Noise

Output voltage ripple at:

\[T_P1 = +25^\circ C, V_I = 110 V, \]

\[I_O = 10 A \text{ resistive load}. \]

Trace: output voltage (50 mV/div.).

Time scale: (5 µs/div.).

Output Load Transient Response

Output voltage response to load current step change (5-7.5-5 A) at:

\[T_P1 = +25^\circ C, V_I = 110 V. \]

Top trace: output voltage (500 mV/div.).

Bottom trace: load current (2 A/div.).

Time scale: (1 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[
R_{\text{TRIM_UP}} = \left(\frac{5.11 \times V_{\text{out}} \times (100 + \Delta \%)}{1.225 \times \Delta \%} - 10.22 \right) k\Omega
\]

\[
\Delta \% = \left(\frac{V_{\text{desired}} - V_{\text{out}}}{V_{\text{desired}}} \right) \times 100
\]

Output Voltage Adjust, Decrease:

\[
R_{\text{TRIM_DOWN}} = \left(\frac{511}{\Delta \%} - 10.22 \right) k\Omega
\]

\[
\Delta \% = \left(\frac{V_{\text{desired}} - V_{\text{out}}}{V_{\text{desired}}} \right) \times 100
\]

Example:

To trim the 15V model by 8% to 16.2V the required external resistor is:

\[
R_{\text{TRIM_UP}} = \left(\frac{5.11 \times 15 \times (100 + 8)}{1.225 \times 8} - 10.22 \right) = 770.62 k\Omega
\]

\[
\Delta \% = \left(\frac{16.2 - 15}{15} \right) \times 100 = 8
\]

Example:

To trim down the 15V model by 7% to 13.95V the required external resistor is:

\[
R_{\text{TRIM_DOWN}} = \left(\frac{511}{7} - 10.22 \right) = 62.78 k\Omega
\]
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Electrical Specification

PKM 7216ZA PIP

24 V, 6.25 A / 150 W

\(T_{pr} = -40 \) to 105°C, \(V_i = 66 \) to 160 V, (sense pins connected to output pins) unless otherwise specified under Conditions.

Typical values given at: \(T_{pr} = +25°C, V_i = 110 \) V, max \(I_o \), unless otherwise specified under Conditions.

Additional Cin = 47 µF, Cout = 10 µF ceramic Cap. + 22 µF E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i) Input voltage range</td>
<td></td>
<td>66</td>
<td>160</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{out}) Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>60</td>
<td>62</td>
<td>64</td>
<td>V</td>
</tr>
<tr>
<td>(V_{on}) Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>62</td>
<td>64</td>
<td>66</td>
<td>V</td>
</tr>
<tr>
<td>(C_i) Internal input capacitance</td>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>(P_o) Output power</td>
<td></td>
<td>0</td>
<td>150</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(\eta) Efficiency</td>
<td>50% of max (I_o), (V_i = 110) V</td>
<td>87</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max (I_o), (V_i = 110) V</td>
<td>88</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>(P_d) Power Dissipation</td>
<td>max (I_o)</td>
<td>20</td>
<td>23</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(P_i) Input idling power</td>
<td>(I_o = 0) A, (V_i = 110) V</td>
<td>1.0</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(P_{SC}) Input standby power</td>
<td>(V_i = 110) V (turned off with RC)</td>
<td>0.7</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(f_s) Switching frequency</td>
<td>0-100% of max (I_o)</td>
<td>297.5</td>
<td>350</td>
<td>402.5</td>
<td>kHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(V_G) Output voltage initial setting and accuracy</th>
<th>(T_{pr} = +25°C, V_i = 110) V, (I_o = 6.25) A</th>
<th>23.7</th>
<th>24</th>
<th>24.3</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_O) Output adjust range</td>
<td>See operating information</td>
<td>21.6</td>
<td>24</td>
<td>26.4</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage tolerance band</td>
<td>0-100% of max (I_o)</td>
<td>23.4</td>
<td>24.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Idling voltage</td>
<td>(I_o = 0) A</td>
<td>23.4</td>
<td>24.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>max (I_o)</td>
<td>12</td>
<td>120</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>(V_i = 110) V, 25-100% of max (I_o)</td>
<td>25</td>
<td>240</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(V_e) Load transient voltage deviation</td>
<td>(V_i = 110) V, Load step 50-75-50% of max (I_o), di/dt = 100mA/µs</td>
<td>±400</td>
<td>±1000</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(t_{l}) Load transient recovery time</td>
<td></td>
<td>90</td>
<td>500</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_r) Ramp-up time (from 10-90% of (V_o))</td>
<td></td>
<td></td>
<td>15</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_s) Start-up time (from (V_i) connection to 90% of (V_o))</td>
<td>max (I_o)</td>
<td>60</td>
<td></td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(t_{EC}) RC start-up time (from (V_{SC}) connection to 90% of (V_o))</td>
<td>max (I_o)</td>
<td>1.55</td>
<td>10</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>(RC) Sink current</td>
<td>See operating information</td>
<td>10</td>
<td></td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_o) Output current</td>
<td></td>
<td>0</td>
<td>6.25</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(I_{lim}) Current limit threshold</td>
<td>(V_i = 110) V, (T_{pr} <) max (T_{pl})</td>
<td>10</td>
<td>12</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(I_{sc}) Short circuit current</td>
<td>(T_{pr} = 25°C,) see Note 1</td>
<td>0.05</td>
<td>0.1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(C_{out}) Recommended Capacitive Load</td>
<td>(T_{pr} = 25°C,) see Note 2</td>
<td>0</td>
<td>2000</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>(V_{out}) Output ripple & noise</td>
<td>See ripple & noise section, (V_o)</td>
<td>27</td>
<td>500</td>
<td>mVP-p</td>
<td></td>
</tr>
<tr>
<td>(OVP) Over voltage protection</td>
<td>(T_{pr} = +25°C, V_i = 110) V, 0-100% of max (I_o)</td>
<td>28</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: hiccup mode

Note 2: Test condition: Electronic Capacitor and full load

Technical Specification
28701-BMR 711 Rev. D March 2018

© Flex
PKM 7000A series Direct Converters

Input 66-160 V, Output up to 12.5 A / 150 W

Typical Characteristics

24 V, 6.25 A / 150 W

Efficiency

- Efficiency vs. load current and input voltage at +25°C.

Power Dissipation

- Dissipated power vs. load current and input voltage at +25°C.

Current Limit Characteristics

- Output voltage vs. load current at I_o > max I_o at +25°C.

Output Current Derating (20mm ¼ brick heat sink)

- Available load current vs. ambient air temperature and airflow at V_i=110 V. See Thermal Consideration section.

PKM 7216ZA PIP

Efficiency vs. load current and input voltage at +25°C.

Dissipated power vs. load current and input voltage at +25°C.

Output voltage vs. load current at I_o > max I_o at +25°C.

Available load current vs. ambient air temperature and airflow at V_i=110 V. See Thermal Consideration section.
Typical Characteristics
24 V, 6.25 A / 150 W

Start-up
Start-up enabled by connecting V_i at:
$T_{Pi} = +25^\circ C, V_i = 110 V,$
$I_o = 6.25 A$ resistive load.
Top trace: output voltage (10 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (50 ms/div.).

Shut-down enabled by disconnecting V_i at:
$T_{Pi} = +25^\circ C, V_i = 110 V,$
$I_o = 6.25 A$ resistive load.
Top trace: output voltage (10 V/div.).
Bottom trace: input voltage (50 V/div.).
Time scale: (50 ms/div.).

Output Ripple & Noise
Output voltage ripple at:
$T_{Pi} = +25^\circ C, V_i = 110 V,$
$I_o = 6.25 A$ resistive load.
Trace: output voltage (20 mV/div.).
Time scale: (5 µs/div.).

Output Load Transient Response
Output voltage response to load current step change (3.125-4.68-3.125 A) at:
$T_{Pi} = +25^\circ C, V_i = 110 V.$
Top trace: output voltage (500 mV/div.).
Bottom trace: load current (1 A/div.).
Time scale: (1 ms/div.).

Output Voltage Adjust (see operating information)
The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:
$R_{ADJ_UP} = \left(\frac{14.6061}{\Delta} - 120 \right) k\Omega$

Output Voltage Adjust, Decrease:
$R_{ADJ_DOWN} = \left(\frac{17.2133}{\Delta} - 151.819 \right) k\Omega$

Example:
To trim up the 24V model by 8% to 25.92V the required external resistor is:
$R_{ADJ_UP} = \left(\frac{14.6061}{0.08} - 120 \right) = 62.58 k\Omega$

Example:
To trim down the 24V model by 7% to 22.32V the required external resistor is:
$R_{ADJ_DOWN} = \left(\frac{17.2133}{0.07} - 151.819 \right) = 94.08 k\Omega$
EMC Specification

Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental switching frequency is 350 kHz for PKM 7116ZA (100W/24V) at $V_i = 110$ V and max I_o.

Conducted EMI Input terminal value (typ)

![EMI without filter](image_url)

Optional external filter for class B

Suggested external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

Filter components:

$C01, C02, C03 = 10 \mu F$

$CY1, CY2, CY9, CY10 = 10K pF$

$L01 = 8 mH$

$L02 = 45 mH$

Conducted EMI with filter

![EMI with filter](image_url)

Layout recommendations

The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.

Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Operating information

Input Voltage
The input voltage range 66 to 160 Vdc meets the railway systems. At input voltages exceeding 160 V, the power loss will be higher than at normal input voltage and T₁ must be limited to absolute max 115°C. The absolute maximum continuous input voltage is 200 Vdc.

Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependant on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like zener diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 examines the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect.

Turn-off Input Voltage
The products monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is 1.7 V.

Remote Control (RC)
The products are fitted with a remote control function referenced to the primary negative input Econnection (-In), with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor to +In.

The external device must provide a minimum required sink current to guarantee a voltage not higher than maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 3 - 5 V.

The standard product is provided with “negative logic” (Active Low) remote control. When the RC pin is left open, or connected to a voltage higher than 2V referenced to -In, the product will be off when the input voltage is applied. To turn on the product, the RC pin should be connected to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin must be wired directly to -In.

The Second option is “positive logic” (Active High) remote control, which can be ordered by adding the suffix “P” to the end of the part number. In this case, when the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the -In. The product will restart automatically when this connection is opened.

See Design Note 021 for detailed information.

Input and Output Impedance
The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The products are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

If the input voltage source contains significant inductance, the addition of a 22 - 100 µF capacitor across the input of the product will ensure stable operation. The capacitor is not required when powering the product from an input source with an inductance below 10 µH. The minimum required capacitance value depends on the output power and the input voltage. The higher output power the higher input capacitance is needed.

External Decoupling Capacitors
When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PWB layouts and cabling.

External decoupling capacitors will become part of the product’s control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical specification. The ESR of the capacitors is a very important parameter. Stable operation is guaranteed with a verified ESR value of >5 mΩ across the output connections.

For further information please contact your local Flex representative.
Output Voltage Adjust (V_{adj})

The products have an Output Voltage Adjust pin (V_{adj}). This pin can be used to adjust the output voltage above or below Output voltage initial setting.

When increasing the output voltage, the voltage at the output pins (including any remote sense compensation) must be kept below the threshold of the over voltage protection, (OVP) to prevent the product from shutting down. At increased output voltages the maximum power rating of the product remains the same, and the max output current must be decreased correspondingly.

To increase the voltage the resistor should be connected between the V_{adj} pin and +Sense pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product.

To decrease the output voltage, the resistor should be connected between the V_{adj} pin and –Sense pin.

Parallel Operation

Two products may be paralleled for redundancy if the total power is equal or less than \(P_{O \text{ max}} \). It is not recommended to parallel the products without using external current sharing circuits.

Remote Sense

The products have remote sense that can be used to compensate for voltage drops between the output and the point of load. The sense traces should be located close to the PWB ground layer to reduce noise susceptibility. The remote sense circuitry will compensate for up to 10% voltage drop between output pins and the point of load.

If the remote sense is not needed +Sense should be connected to +Out and -Sense should be connected to -Out.

Over Temperature Protection (OTP)

The products are protected from thermal overload by an internal over temperature shutdown circuit.

When \(T_{P1} \) as defined in thermal consideration section exceeds 115°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >10°C below the temperature threshold.

Over Voltage Protection (OVP)

The products have output over voltage protection that will shut down the product in over voltage conditions. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically after removal of the over voltage condition.

Over Current Protection (OCP)

The products include current limiting circuitry for protection at continuous overload. The output voltage will decrease towards zero for output currents in excess of max output current (max \(I_O \)). The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.
Thermal Consideration

General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PWB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependent on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_{I} = 110V$.

The product is tested on a 254 x 254 mm, 35 µm (1 oz), 8-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.

Definition of product operating temperature
The product operating temperature is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1. The temperature at this position (T_{P1}) should not exceed the maximum temperatures in the table below. Temperature above maximum T_{P1}, measured at the reference point P1 are not allowed and may cause permanent damage.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Reference point</td>
<td>115°C</td>
</tr>
</tbody>
</table>
Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-Vin</td>
</tr>
<tr>
<td>2</td>
<td>Remote On/Off Control</td>
</tr>
<tr>
<td>3</td>
<td>+Vin</td>
</tr>
<tr>
<td>4</td>
<td>-Vout</td>
</tr>
<tr>
<td>5</td>
<td>-Vsense</td>
</tr>
<tr>
<td>6</td>
<td>Trim</td>
</tr>
<tr>
<td>7</td>
<td>+Vsense</td>
</tr>
<tr>
<td>8</td>
<td>+Vout</td>
</tr>
</tbody>
</table>
Mechanical Information - Enclosure Type

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-Vin</td>
</tr>
<tr>
<td>2</td>
<td>Remote On/Off Control</td>
</tr>
<tr>
<td>3</td>
<td>+Vin</td>
</tr>
<tr>
<td>4</td>
<td>-Vout</td>
</tr>
<tr>
<td>5</td>
<td>+Vsense</td>
</tr>
<tr>
<td>6</td>
<td>Trim</td>
</tr>
<tr>
<td>7</td>
<td>+Vsense</td>
</tr>
<tr>
<td>8</td>
<td>+Vout</td>
</tr>
</tbody>
</table>

Notes:
1. Pins:
 - Material: Brass
 - Plating: Nickel

2. Weight: typical 70g
 - All dimensions in inches (mm).
 - Tolerance .xx= ±0.04”
 - .xxx=±0.010”

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
Mechanical Information – 10mm ¼ brick heat sink

![Diagram of 10mm ¼ brick heat sink]

Notes:
1. **Pins:**
 - Material: Brass
 - Plating: Nickel

2. **Heatsink:**
 - Material: aluminum
 - Plating: Anodized

3. **Weight:** typical 110g
 - All dimensions in inches (mm).
 - Tolerance .xx=±0.04”
 - .xxx=±0.010”

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

Mechanical Information - 20mm ¼ brick heat sink

Notes:
1. Pins:
 Material: Brass
 Plating: Nickel

2. Heatsink:
 Material: aluminum
 Plating: Anodized

3. Weight: typical 130g
 All dimensions in inches (mm).
 Tolerance .xx= ±0.04"
 .xxx=±0.010"

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
Mechanical Information - 20mm ½ brick heat sink

Notes:
1. Pins:
 Material: Brass
 Plating: Nickel

2. Heatsink:
 Material: aluminum
 Plating: Anodized

3. Weight: typical 140g
 All dimensions in inches (mm).
 Tolerance: .xx = ±0.04"
 .xxx = ±0.010"

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
PKM 7000A series Direct Converters
Input 66-160 V, Output up to 12.5 A / 150 W

RECOMMENDED FOOTPRINT
TOP VIEW

© Flex
Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.

A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic clamshell trays.

Tray Specifications

<table>
<thead>
<tr>
<th>Material</th>
<th>Antistatic PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface resistance</td>
<td>$10^5 < \text{Ohm/square} < 10^{11}$</td>
</tr>
<tr>
<td>Bakability</td>
<td>This tray is not bake-able</td>
</tr>
<tr>
<td>Tray thickness</td>
<td>23.1 mm [0.9094 inch]</td>
</tr>
<tr>
<td>Box capacity</td>
<td>96 products (8 full trays/box)</td>
</tr>
<tr>
<td>Tray weight</td>
<td>60 g empty, 660g full tray</td>
</tr>
</tbody>
</table>

A. Package(with no heat sink)

B. Package(with 10mm ¼ brick heat sink)

C. Package(with 20mm ¼ brick heat sink)

D. Package(with 20mm ½ brick heat sink)
Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Method/Standard</th>
<th>Temperature range</th>
<th>Number of cycles</th>
<th>Dwell/transfer time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change of temperature (Temperature cycling)</td>
<td>IEC 60068-2-14 Na</td>
<td>-55 to 105°C</td>
<td>20</td>
<td>30 min/3 min</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 60068-2-1 Ad</td>
<td>-45°C</td>
<td></td>
<td>72 h</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-30</td>
<td>45°C</td>
<td>95 % RH</td>
<td>72 hours</td>
</tr>
<tr>
<td>Dry heat</td>
<td>IEC 60068-2-2 Bd</td>
<td>125°C</td>
<td></td>
<td>1000 h</td>
</tr>
</tbody>
</table>

Electrostatic discharge susceptibility
- **IEC 61340-3-1, JESD 22-A114**
 - Human body model (HBM): Class 2, 2000 V

- **IEC 60068-2-45 XA, method 2**
 - Water
 - Glycol ether (isopropyl alcohol)
 - 55°C
 - 35°C (35°C)

- **IEC 60068-2-27 Ea**
 - Peak acceleration
 - 200 g
 - 6 ms

- **J-STD-020E**
 - Level 1 (SnPb-eutectic)
 - Level 3 (Pb Free)
 - 225°C
 - 260°C

- **MIL-STD-202G, method 108A**
 - Human body model (HBM): Class 2, 2000 V

- **IEC 60068-2-1 Test Ua1**
 - Through hole mount products: All leads

- **IEC 60068-2-20 test Ta**
 - Preconditioning
 - Temperature, SnPb Eutectic
 - Temperature, Pb-free
 - 235°C
 - 245°C

- **IEC 60068-2-64 Fh, method 1**
 - Frequency
 - Spectral density
 - Duration
 - 10 to 500 Hz
 - 0.07 g²/Hz
 - 10 min in each direction

Notes
1. Only for products intended for wave soldering (plated through hole products)

EN 50155

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>EN 50155 Reference Clause(s)</th>
<th>Reference Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic Test</td>
<td>12.2.1, 12.2.2, 5.1.1.1, 5.1.3, 12.2.9, 12.2.6</td>
<td>-</td>
</tr>
<tr>
<td>EMC</td>
<td>12.2.7, 12.2.8</td>
<td>EN 50121-3-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61000-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 55011</td>
</tr>
<tr>
<td>Environmental Tests</td>
<td>12.2.3, 12.2.4, 12.2.5, 12.2.11</td>
<td>EN 60068-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61373</td>
</tr>
</tbody>
</table>