PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Key Features
- Industry standard case dimensions
 25.4*25.4*10.8 mm (1.0*1.0*0.41 in)
- High Efficiency, typ. 92% at 24 Vin, 12 Vout / 30W
- 1500 Vdc input to output isolation
- PKE 33XXX series meets safety requirements according to IEC/UL 62368
 PKE 32XX series meets safety requirements according to IEC/UL 60950

General Characteristics
- Input under voltage shutdown
- Output over voltage protection
- Output short-circuit protection
- Output voltage adjust function
- Over temperature protection
- Monotonic start-up
- Remote control
- ISO 9001/14001 certified supplier

Contents
Ordering Information ... 2
General Information ... 2
Safety Specification ... 3
Absolute Maximum Ratings ... 4

Electrical Specification
3.3 V, 4.5 A / 15 W
5 V, 3 A / 15 W
12 V, 1.25 A / 15 W
15 V, 1 A / 15 W
3.3 V, 7 A / 23.1 W
5 V, 6 A / 30 W
12 V, 2.5 A / 30 W
15 V, 2 A / 30 W
24 V, 1.25 A / 30 W
48 V, 0.625 A / 30 W
54 V, 0.463 A / 25 W

PKE 3210 PI ... 5
PKE 3211 PI ... 8
PKE 3213 PI ... 11
PKE 3215 PI ... 14
PKE 3310 PI ... 17
PKE 3311 PI ... 20
PKE 3313 PI ... 23
PKE 3315 PI ... 26
PKE 3316Z PI ... 29
PKE 3316J PI ... 32
PKE 3316H PI ... 35

EMC Specification ... 38
Operating Information ... 40
Thermal Consideration ... 41
Connections ... 42
Mechanical Information ... 43
Soldering Information ... 44
Delivery Information ... 44
Product Qualification Specification ... 45
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKE 3210 PI</td>
<td>3.3 V, 4.5 A / 15 W</td>
</tr>
<tr>
<td>PKE 3211 PI</td>
<td>5.0 V, 3 A / 15 W</td>
</tr>
<tr>
<td>PKE 3213 PI</td>
<td>12 V, 1.25 A / 15 W</td>
</tr>
<tr>
<td>PKE 3215 PI</td>
<td>15 V, 1 A / 15 W</td>
</tr>
<tr>
<td>PKE 3310 PI</td>
<td>3.3 V, 7 A / 23.1 W</td>
</tr>
<tr>
<td>PKE 3311 PI</td>
<td>5 V, 6 A / 30 W</td>
</tr>
<tr>
<td>PKE 3313 PI</td>
<td>12 V, 2.5 A / 30 W</td>
</tr>
<tr>
<td>PKE 3315 PI</td>
<td>15 V, 2 A / 30 W</td>
</tr>
<tr>
<td>PKE 3316Z PI</td>
<td>24 V, 1.25 A / 30 W</td>
</tr>
<tr>
<td>PKE 3316J PI</td>
<td>48 V, 0.625 A / 30 W</td>
</tr>
<tr>
<td>PKE 3316H PI</td>
<td>54 V, 0.463 A / 25 W</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>PKE 3XXX n1:n2</th>
<th>Options</th>
<th>n1</th>
<th>n2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mounting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote Control logic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example positive logic product with tray packing would be PKE 3213 PI.

* Standard variant (i.e. no option selected)

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF= 1/λ) is calculated at max output power and an operating ambient temperature (Tamb) of +25°C. Flex uses Telcordia SR-332 Issue 3 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 3 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure rate, λ</th>
<th>Std.deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>195.215 nFailures/h (PKE 32XX)</td>
<td>114.01 nFailures/h</td>
</tr>
<tr>
<td>219.644 nFailures/h (PKE 33XXX)</td>
<td>88.962 nFailures/h</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKE 32XX = 5.12 Mh
MTBF at 90% confidence level = 2.87 Mh

MTBF (mean value) for the PKE 33XXX = 4.55 Mh.
MTBF at 90% confidence level = 2.94 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2019

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
Safety Specification

General information

PKE products are designed in accordance with the safety standards IEC 62368-1 and UL 62368-1, Audio/video, information and communication technology equipment - Part 1: Safety requirements

IEC/UL 62368-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Electrically-caused fire
- Injury caused by hazardous substances
- Mechanically-caused injury
- Skin burn
- Radiation-caused injury

On-board DC/DC converters are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without “conditions of acceptability”. Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use shall comply with the requirements in IEC/UL 62368-1 or IEC/UL 60950-1. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/UL 60950-1 with regards to safety.

Flex DC/DC converters are UL 62368-1 or UL 60950-1 recognized. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, Fire hazard testing, test flames – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters

The product provides functional insulation between input and output according to IEC/UL 62368-1.

For functional insulated products (see Safety Certificate) the output is considered as ES1 energy source if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/UL 62368-1.
- The input source provides basic or supplementary insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/UL 62368-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/UL 62368-1 and the maximum input source voltage is 60 Vdc.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>pr</sub> Operating Temperature (see Thermal Consideration section)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKE 32XX variants</td>
<td>-40</td>
<td></td>
<td>+110</td>
<td>°C</td>
</tr>
<tr>
<td>PKE 33XXX variants</td>
<td>-40</td>
<td></td>
<td>+115</td>
<td>°C</td>
</tr>
<tr>
<td>T<sub>s</sub> Storage temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-55</td>
<td></td>
<td>+125</td>
<td>°C</td>
</tr>
<tr>
<td>V<sub>i</sub> Input voltage</td>
<td>9</td>
<td></td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>iso</sub> Isolation voltage (input to output test voltage)</td>
<td></td>
<td></td>
<td>1500</td>
<td>Vdc</td>
</tr>
<tr>
<td>V<sub>e</sub> Input voltage transient (tp 1s)</td>
<td></td>
<td></td>
<td>50</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>RC</sub> Remote Control pin voltage (see Operating Information section)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive logic option</td>
<td>0</td>
<td></td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>Negative logic option</td>
<td>0</td>
<td></td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>adj</sub> Adjust pin voltage (see Operating Information section)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td>V<sub>e</sub></td>
</tr>
</tbody>
</table>

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions above those indicated in the Electrical Specification section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fundamental Circuit Diagram

![Fundamental Circuit Diagram](image-url)
Electrical Specification

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3210 PI

3.3 V, 4.5 A / 15 W

- $T_{op} = -40$ to $+90^\circ$C, $V_i = 9$ to 36 V, unless otherwise specified under Conditions.
- Typical values given at: $T_{op} = +25^\circ$C, $V_i = 24$ V, max I_o, unless otherwise specified under Conditions.
- Additional $C_{in} = 22 \mu F$ ceramic capacitor. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i Input voltage range</td>
<td></td>
<td>9</td>
<td>36</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{off} Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>6.5</td>
<td>7.0</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{on} Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>7.5</td>
<td>8.1</td>
<td>8.8</td>
<td>V</td>
</tr>
<tr>
<td>C_i Internal input capacitance</td>
<td></td>
<td>10</td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>P_o Output power</td>
<td></td>
<td>0</td>
<td>15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η Efficiency</td>
<td>50% of max I_o, $V_i = 24$ V</td>
<td>84.6</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max I_o, $V_i = 24$ V</td>
<td>87.4</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% of max I_o, $V_i = 12$ V</td>
<td>88.2</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max I_o, $V_i = 12$ V</td>
<td>86.2</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P_d Power Dissipation</td>
<td>max I_o</td>
<td>2.2</td>
<td>5.0</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_i Input idling power</td>
<td>$I_o = 0$ A, $V_i = 24$ V</td>
<td>0.866</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_{St} Input standby power</td>
<td>$V_i = 24$ V, (turned off with RC)</td>
<td>0.240</td>
<td></td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>f_s Switching frequency</td>
<td>0-100 % of max I_o</td>
<td>340</td>
<td>400</td>
<td>460</td>
<td>kHz</td>
</tr>
</tbody>
</table>

V_{Ov} Output voltage initial setting and accuracy	$T_{op} = +25^\circ$C, $V_i = 24$ V, $I_o = 4.5$ A	3.26	3.30	3.34	V
V_o Adjust range	See operating information	2.97	3.63	V	
V_o Output voltage tolerance band	10-100% of max I_o	3.17	3.43	V	
	Idling voltage	3.0	3.6	V	
	Line regulation	max I_o	2	10	mV
	Load regulation	$V_i = 24$ V, 10-100% of max I_o	10	33	mV
V_v Load transient voltage deviation	$V_i = 24$ V, Load step 25-75-25% of max I_o, $di/dt = 1$ A/µs	±273	±700	mV	
t_c Load transient recovery time		210	500	µs	
t_r Ramp-up time (from 10-90% of V_o)	10-100% of max I_o	0.1	0.86	5	ms
t_s Start-up time (from V_o connection to 90% of V_o)	1	6	30	ms	
t_f V, shut-down fall time (from V_o off to 10% of V_o)	max I_o	0.34		ms	
	$I_o = 0$ A	1.6		s	
t_{RC} RC start-up time	max I_o	5.6		ms	
t_{RC} RC shut-down fall time (from RC off to 10% of V_o)	max I_o	0.1		ms	
	$I_o = 0$ A	1.7		s	
I_o Output current	$V_i = 24$ V	0.45	4.5	A	
I_{lim} Current limit threshold	$V_i = 24$ V, $T_{op} < max T_{p1}$	4.8	8.0	11.2	A
I_{sc} Short circuit current	$T_{op} = 25^\circ$C, see Note 1	2.6		A	
C_{cap} Recommended Capacitive Load	$T_{op} = 25^\circ$C, $V_i = 24$ V, see Note 2	0	5000	µF	
V_{Ope} Output ripple & noise	See ripple & noise section, V_o	17	34	mV-p	
OVP Over voltage protection	$T_{op} = +25^\circ$C, $V_i = 24$ V, 0-100% of max I_o	3.9		V	
RC Sink current, see Note 3	See operating information	10		mA	
	Trigger level	2.5		V	

Note:

1. Output current (RMS), hiccup mode
2. Test condition: Electrolytic Capacitor with 10% - full load
3. Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.
Typical Characteristics
3.3 V, 4.5 A / 15 W

Efficiency

![Efficiency vs. load current and input voltage at T_{P1} = +25°C.]

Power Dissipation

![Dissipated power vs. load current and input voltage at T_{P1} = +25°C.]

Output Characteristics

![Output voltage vs. load current at T_{P1} = +25°C.]

Current Limit Characteristics

![Output voltage vs. load current at I_{O} > max I_{O}, T_{P1} = +25°C.]

Output Current Derating

![Available load current vs. ambient air temperature and airflow at V_{I} = 24 V. See Thermal Consideration section.]

Thermal Resistance

![Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.]

PKE 3000 series Direct Converters

Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3210 PI
Typical Characteristics
3.3 V, 4.5 A / 15 W

Start-up

Start-up enabled by connecting V1 at:
TP1 = +25°C, V1 = 24 V,
I0 = 4.5 A electronic load.

Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: (2 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust
The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

\[R_{ou} = \frac{5.6 \times (1.1406V_{oi} - V_{od})}{V_{od} - V_{oi}} \text{(KOhm)} \]

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

\[R_{od} = \frac{6.3875 \times (1.1585V_{od} - V_{oi})}{V_{oi} - V_{od}} \text{(KOhm)} \]

Vod is the desired output voltage and Voi is the initial output voltage.

Output Ripple & Noise

Output voltage ripple at:
TP1 = +25°C, V1 = 24 V,
I0 = 4.5 A electronic load

Trace: output voltage (20 mV/div.).
Time scale: (2 µs/div.)
20 MHz bandwidth

Output Load Transient Response

Output voltage response to load current step-change (1.125-3.375-1.125 A) at:
TP1 = +25°C, V1 = 24 V, di/dt = 1A/µs
Co = 22 µF ceramic capacitor

Top trace: output voltage (200 mV/div.).
Bottom trace: load current (2 A/div.).
Time scale: (0.5 ms/div.).
Electrical Specification

5 V, 3 A / 15 W

- **Input voltage range**: \(T_{PI} = 40 \) to \(+90^\circ\)C, \(V_I = 9 \) to 36 V, unless otherwise specified under Conditions.
- **Turn-off input voltage**: \(T_{PI} = +25^\circ\)C, \(V_I = 24 \) V, max \(I_O \), unless otherwise specified under Conditions.
- Additional \(C_{out} = 22 \mu F \) ceramic capacitor. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_I)</td>
<td>Input voltage range</td>
<td>9</td>
<td>36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{off})</td>
<td>Turn-off input voltage</td>
<td>6.5</td>
<td>7.0</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{on})</td>
<td>Turn-on input voltage</td>
<td>7.5</td>
<td>8.1</td>
<td>8.8</td>
<td>V</td>
</tr>
<tr>
<td>(I_C)</td>
<td>Internal input capacitance</td>
<td>10</td>
<td></td>
<td></td>
<td>(\mu F)</td>
</tr>
<tr>
<td>(P_O)</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efficiency</td>
<td>50% of max (I_O), (V_I = 24) V</td>
<td>88.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max (I_O), (V_I = 24) V</td>
<td>89.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (I_O), (V_I = 12) V</td>
<td>89.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (I_O), (V_I = 12) V</td>
<td>87.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_s)</td>
<td>Power Dissipation</td>
<td>max (I_O)</td>
<td>1.9</td>
<td>5.0</td>
<td>W</td>
</tr>
<tr>
<td>(P_i)</td>
<td>Input idling power</td>
<td>(I_O = 0) A, (V_I = 24) V</td>
<td>0.782</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(P_{ID})</td>
<td>Input standby power</td>
<td>(V_I = 24) V (turned off with RC)</td>
<td>0.240</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(f_s)</td>
<td>Switching frequency</td>
<td>0-100% of max (I_O)</td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
</tbody>
</table>

PKE 3000 series Direct Converters

- **Input**: 9 - 36 V, **Output**: up to 7 A / 30 W

Note:
1. Output current (RMS), hiccup mode
2. Test condition: Electrolytic Capacitor with 10% - full load
3. Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics

<table>
<thead>
<tr>
<th>5 V, 3 A / 15 W</th>
</tr>
</thead>
</table>

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Output Characteristics

![Output voltage graph](image)

Output voltage vs. load current at $T_{P1} = +25^\circ C$.

Output Current Derating

![Available load current graph](image)

Available load current vs. ambient air temperature and airflow at $V_i = 24$ V. See Thermal Consideration section.

Power Dissipation

![Power dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Current Limit Characteristics

![Current limit graph](image)

Output voltage vs. load current at $I_o > max I_o; T_{P1} = +25^\circ C$.

Thermal Resistance

![Thermal resistance graph](image)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal Consideration section.
Typical Characteristics
5 V, 3 A / 15 W

Start-up

Start-up enabled by connecting V in at:
Tp1 = +25°C, V1 = 24 V,
I0 = 3 A electronic load.
Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: (2 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
Tp1 = +25°C, V1 = 24 V,
I0 = 3 A electronic load.
Trace: output voltage (20 mV/div.).
Time scale: (2 µs/div.).
20 MHz bandwidth.

Output Load Transient Response

Output voltage response to load current step-change (0.75-2.25-0.75 A) at:
Tp1 = +25°C, V1 = 24 V, di/dt = 1A/µs
C0 = 22 µF ceramic capacitor.
Top trace: output voltage (200 mV/div.).
Bottom trace: load current (1 A/div.).
Time scale: (0.5 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust
The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

\[R_{ou} = 3.3 \times \left(\frac{1.1515V_{oi} - V_{oi}}{V_{oi} - V_{od}} \right) (\text{KOhm}) \]

Vod is the desired output voltage and Voi is the initial output voltage.

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

\[R_{od} = 3.8 \times \left(\frac{1.1316V_{oi} - V_{oi}}{V_{oi} - V_{od}} \right) (\text{KOhm}) \]

Vod is the desired output voltage and Voi is the initial output voltage.
Electrical Specification

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3213 PI

12 V, 1.25 A / 15 W

T_{pi} = 40 to +90°C, V_i = 9 to 36 V, unless otherwise specified under Conditions.
Typical values given at: T_i = +25°C, V_i = 24 V, max I_o, unless otherwise specified under Conditions.
Additional C_{min} = 22 μF ceramic capacitor. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>i</sub></td>
<td>Input voltage range</td>
<td>9</td>
<td>36</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V<sub>off</sub></td>
<td>Turn-off input voltage</td>
<td>6.5</td>
<td>7.0</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>on</sub></td>
<td>Turn-on input voltage</td>
<td>7.5</td>
<td>8.1</td>
<td>8.8</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>i</sub></td>
<td>Internal input capacitance</td>
<td>10</td>
<td>μF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<sub>o</sub></td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I<sub>o</sub>, V<sub>i</sub> = 24 V</td>
<td>86.5</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I<sub>o</sub>, V<sub>i</sub> = 24 V</td>
<td>89.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I<sub>o</sub>, V<sub>i</sub> = 12 V</td>
<td>88.2</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I<sub>o</sub>, V<sub>i</sub> = 12 V</td>
<td>87.4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P<sub>s</sub></td>
<td>Power Dissipation</td>
<td>max I<sub>o</sub></td>
<td>1.9</td>
<td>5.0</td>
<td>W</td>
</tr>
<tr>
<td>P<sub>i</sub></td>
<td>Input idling power</td>
<td>I<sub>i</sub> = 0 A, V<sub>i</sub> = 24 V</td>
<td>0.760</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P<sub>B</sub></td>
<td>Input standby power</td>
<td>V<sub>i</sub> = 24 V (turned off with RC)</td>
<td>0.240</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>τ<sub>s</sub></td>
<td>Switching frequency</td>
<td>0-100 % of max I<sub>o</sub></td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
<tr>
<td>V<sub>o</sub></td>
<td>Output voltage initial setting and accuracy</td>
<td>T<sub>pi</sub> = +25°C, V<sub>i</sub> = 24 V, I<sub>i</sub> = 1.25 A</td>
<td>11.85</td>
<td>12.00</td>
<td>12.15</td>
</tr>
<tr>
<td>V<sub:o</sub></td>
<td>Output adjust range</td>
<td>See operating information</td>
<td>10.8</td>
<td>13.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>10-100% of max I<sub>o</sub></td>
<td>11.52</td>
<td>12.48</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Idling voltage</td>
<td>I<sub>i</sub> = 0 A</td>
<td>11.30</td>
<td>12.7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>max I<sub>o</sub></td>
<td>2</td>
<td>24</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>V<sub>i</sub> = 24 V, 10-100% of max I<sub>o</sub></td>
<td>5</td>
<td>120</td>
<td>mV</td>
</tr>
<tr>
<td>V<sub>r</sub></td>
<td>Load transient voltage deviation</td>
<td>V<sub>i</sub> = 24 V, Load step 25-75-25% of max I<sub>o</sub>, di/dt = 1 A/μs</td>
<td>±250</td>
<td>±700</td>
<td>mV</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>Load transient recovery time</td>
<td></td>
<td>200</td>
<td>500</td>
<td>μs</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>Ramp-up time (from 10-90% of V<sub>o</sub>)</td>
<td>10-100% of max I<sub>o</sub></td>
<td>0.1</td>
<td>1.2</td>
<td>5</td>
</tr>
<tr>
<td>t<sub>s</sub></td>
<td>Start-up time (from V<sub>i</sub> connection to 90% of V<sub>o</sub>)</td>
<td></td>
<td>1</td>
<td>5.8</td>
<td>30</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>V<sub>i</sub> shut-down fall time (from V<sub>i</sub> off to 10% of V<sub>o</sub>)</td>
<td>max I<sub>o</sub></td>
<td>0.57</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>i</sub> = 0A</td>
<td>0.15</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>t<sub>rc</sub></td>
<td>RC start-up time</td>
<td>max I<sub>o</sub></td>
<td>5.1</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>t<sub>rc</sub></td>
<td>RC shut-down fall time (from RC off to 10% of V<sub>o</sub>)</td>
<td>max I<sub>o</sub></td>
<td>0.28</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I<sub>i</sub> = 0A</td>
<td>0.16</td>
<td></td>
<td>s</td>
</tr>
<tr>
<td>I<sub>o</sub></td>
<td>Output current</td>
<td></td>
<td>0.125</td>
<td>1.25</td>
<td>A</td>
</tr>
<tr>
<td>I<sub>lim</sub></td>
<td>Current limit threshold</td>
<td>V<sub>i</sub> = 24 V, T<sub>pi</sub> < max T<sub>pi</sub></td>
<td>1.35</td>
<td>2.25</td>
<td>3.15</td>
</tr>
<tr>
<td>I<sub>sc</sub></td>
<td>Short circuit current</td>
<td>T<sub>pi</sub> = 25°C, see Note 1</td>
<td>1.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C<sub>sal</sub></td>
<td>Recommended Capacitive Load</td>
<td>T<sub>pi</sub> = 25°C, V<sub>i</sub> = 24 V, see Note 2</td>
<td>0</td>
<td>470</td>
<td>μF</td>
</tr>
<tr>
<td>V<sub>BR</sub></td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, V<sub>o</sub></td>
<td>20</td>
<td>40</td>
<td>mVp-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td>T<sub>pi</sub> = +25°C, V<sub>i</sub> = 24 V, 0-100% of max I<sub>o</sub></td>
<td>15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Sink current, see Note 3</td>
<td>See operating information</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Trigger level</td>
<td>See operating information</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Output current (RMS), hiccup mode
Note 2: Test condition: Electrolytic Capacitor with 10% - full load
Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.
Typical Characteristics

12 V, 1.25 A / 15 W

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{PI} = +25^\circ C$.

Output Characteristics

![Output voltage graph](image)

Output voltage vs. load current at $T_{PI} = +25^\circ C$.

Current Limit Characteristics

![Current limit graph](image)

Output voltage vs. load current at $I_O > max I_O$, $T_{PI} = +25^\circ C$.

Output Current Derating

![Current derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_I = 24$ V. See Thermal Consideration section.

Power Dissipation

![Power dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{PI} = +25^\circ C$.

Input Characteristics

PK 3213 PI

Efficiency

Output Characteristics

Current Limit Characteristics

Output Current Derating

Thermal Resistance

![Thermal resistance graph](image)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal Consideration section.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics

12 V, 1.25 A / 15 W

Start-up

- **Trace:** output voltage (5 V/div.),
- **Time scale:** (2 ms/div.).
- **Start-up enabled by connecting V1 at:**
 - TP1 = +25°C, V1 = 24 V,
 - I0 = 1.25 A electronic load.

Shut-down

- **Trace:** output voltage (5 V/div.),
- **Time scale:** (2 ms/div.).
- **Output disabled by removing V1 at:**
 - TP1 = +25°C, V1 = 24 V,
 - I0 = 1.25 A electronic load.

Output Ripple & Noise

- **Trace:** output voltage (20 mV/div.),
- **Time scale:** (2 µs/div.), 20 MHz bandwidth.
- **Output voltage ripple at:**
 - TP1 = +25°C, V1 = 24 V,
 - I0 = 1.25 A electronic load.

Output Load Transient Response

- **Trace:** output voltage response to load current step-change (0.312-0.937-0.312 A) at:
 - TP1 = +25°C, V1 = 24 V, di/dt = 1 A/µs,
 - C0 = 22 µF ceramic capacitor.
- **Top trace:** output voltage (200 mV/div.),
- **Bottom trace:** load current (0.5 A/div.),
- **Time scale:** (0.5 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

- **To adjust the output voltage upwards,** a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:
 - \[R_{ou} = 22 \times (1.1633V_{oi} - V_{od})/(V_{od} - V_{oi})(\text{KOhm}) \]
 - \(V_{oi} \) is the initial output voltage.

- **To adjust the output voltage downwards,** a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:
 - \[R_{od} = 25.5924 \times (1.1390V_{oi} - V_{od})/(V_{oi} - V_{od})(\text{KOhm}) \]
 - \(V_{od} \) is the desired output voltage and \(V_{oi} \) is the initial output voltage.
Electrical Specification

15 V, 1 A / 15 W

$T_{PP} = -40$ to $+90^\circ C, V_i = 9$ to 36 V, unless otherwise specified under Conditions.

Typical values given at: $T_{PP} = +25^\circ C, V_i = 24 V$, max I_o, unless otherwise specified under Conditions.

Additional $C_{out} = 22 \mu F$ ceramic capacitor. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>9</td>
<td></td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>6.5</td>
<td>7.0</td>
<td>8.0</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>7.5</td>
<td>8.1</td>
<td>8.8</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>10</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_o, $V_i = 24 V$</td>
<td>85.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, $V_i = 24 V$</td>
<td>88.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I_o, $V_i = 12 V$</td>
<td>88.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, $V_i = 12 V$</td>
<td>87.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{Ps}</td>
<td>Power Dissipation</td>
<td>max I_o</td>
<td>1.9</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>P_i</td>
<td>Input idling power</td>
<td>$I_o = 0 A$, $V_i = 24 V$</td>
<td>0.460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{Sec}</td>
<td>Input standby power</td>
<td>$V_i = 24 V$ (turned off with RC)</td>
<td>0.240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>0-100% of max I_o</td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
</tbody>
</table>

V_o	Output voltage initial setting and accuracy	$T_{PP} = +25^\circ C, V_i = 24 V, I_o = 1 A$	14.82	15.00	15.18	V
V_{io}	Output adjust range	See operating information	13.50	16.50		V
V_{ol}	Output voltage tolerance band	10-100% of max I_o	14.4	15.6		V
	Idling voltage	$I_o = 0 A$	14	16		V
	Line regulation	max I_o	2	30		mV
V_c	Load transient voltage deviation	$V_i = 24 V$, Load step 25-75-25% of max I_o, di/dt = 1 A/µs	±230	±700		mV
I_{tr}	Load transient recovery time	$V_i = 24 V$	200	500		µs
I_{tr}	Load transient recovery time	$V_i = 24 V$	0.1	1.08		ms
	Ramp-up time (from 10-90% of V_o)	10-100% of max I_o	0.1	1.08		ms
I_{st}	Start-up time (from V_i connection to 90% of V_o)	1	7.7	30	ms	
V_{shd}	V_i shut-down fall time (from V_i off to 10% of V_o)	max I_o	0.77			ms
	$I_o = 0 A$	0.58			s	
I_{rc}	RC start-up time	max I_o	6.8			ms
I_{rc}	RC shut-down fall time (from RC off to 10% of V_o)	max I_o	0.57			ms
	$I_o = 0 A$	0.56			s	
I_o	Output current	0.1	1.0		A	
I_{lim}	Current limit threshold	$V_i = 24 V$, $T_{PP} < max T_{PP}$	1.1	1.8	2.5	A
I_{sec}	Short circuit current	$T_{PP} = 25^\circ C$, see Note 1	1.5			A
C_{out}	Recommended Capacitive Load	$T_{PP} = 25^\circ C, V_i = 24 V$, see Note 2	0	470		µF
V_{oac}	Output ripple & noise	See ripple & noise section, V_o	22	44		mVp-p
OVP	Over voltage protection	$T_{PP} = +25^\circ C, 0-100$% of max I_o	18			V
RC	Sink current, see Note 3	See operating information	10			mA
	Trigger level	See operating information	2.5			V

Note 1: Output current (RMS), hiccup mode
Note 2: Test condition: Electrolytic Capacitor with 10% - full load
Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.
Typical Characteristics

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics

15 V, 1 A / 15 W

Efficiency

![Efficiency vs. load current and input voltage at T_P1 = +25°C.](image)

Power Dissipation

![Dissipated power vs. load current and input voltage at T_P1 = +25°C.](image)

Output Characteristics

![Output voltage vs. load current at T_P1 = +25°C.](image)

Current Limit Characteristics

![Output voltage vs. load current at I_O > max I_O, T_P1 = +25°C.](image)

Output Current Derating

![Available load current vs. ambient air temperature and airflow at V_I = 24 V. See Thermal Consideration section.](image)

Thermal Resistance

![Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.](image)
Typical Characteristics

15 V, 1 A / 15 W

Start-up

Shut-down

Output Ripple & Noise

Output Load Transient Response

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

$$R_{ou} = 30 \times (1.1499V_{oi} - V_{od})/(V_{od} - V_{oi})(\Omega)$$

Vod is the desired output voltage and Voi is the initial output voltage.

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

$$R_{od} = 34.497 \times (1.1331V_{oi} - V_{od})(V_{oi} - V_{od})(\Omega)$$

Vod is the desired output voltage and Voi is the initial output voltage.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Technical Specification

Electrical Specification

3.3 V, 7 A / 23.1 W

- **T_{P1}** = -40 to +115°C, **V_I** = 9 to 36 V, unless otherwise specified under Conditions.
- Typical values given at: **T_{P1}** = +25°C, **V_I** = 24 V, **max I_O**, unless otherwise specified under Conditions.
- Additional **C_{in}** = 220 µF, **C_{out}** = 0.1 µF ceramic Cap. + 10µF E-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>I</sub> Input voltage range</td>
<td></td>
<td>9</td>
<td></td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>in</sub> Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>on</sub> Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>C<sub>I</sub> Internal input capacitance</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P<sub>O</sub> Output power</td>
<td></td>
<td>0</td>
<td>23.1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η Efficiency</td>
<td>50% of max I<sub>O</sub>, V<sub>I</sub> = 12 V</td>
<td>88</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max I<sub>O</sub>, V<sub>I</sub> = 24 V</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<sub>D</sub> Power Dissipation</td>
<td>max I<sub>O</sub></td>
<td>3</td>
<td>4.6</td>
<td>6</td>
<td>W</td>
</tr>
<tr>
<td>P<sub>I</sub> Input idling power</td>
<td>I<sub>0</sub> = 0 A, V<sub>I</sub> = 24 V</td>
<td>0.2</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P<sub>RC</sub> Input standby power</td>
<td>V<sub>I</sub> = 24 V (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>t<sub>s</sub> Switching frequency</td>
<td>0-100 % of max I<sub>O</sub></td>
<td>238</td>
<td>280</td>
<td>322</td>
<td>kHz</td>
</tr>
</tbody>
</table>

V_O

- **V_{in}** Output voltage initial setting and accuracy
 - **T_{P1}** = +25°C, **V_I** = 24 V, **I_O** = 1.25 A
 - **min** 3.267 | **typ** 3.3 | **max** 3.333 | **V**

V_{in}

- **Output adjust range**
 - See operating information
 - **min** 2.97 | **typ** 3.3 | **max** 3.63 | **V**

- **Output voltage tolerance band**
 - 0-100% of max I_O
 - **min** 3.201 | **typ** 3.399 | **max** 3.399 | **V**

- **Idling voltage**
 - **I₀** = 0 A
 - **min** 3.201 | **typ** 3.399 | **max** 3.399 | **V**

- **Line regulation**
 - **min** I_O
 - **max** 5.5 | **typ** 6.6 | **max** 6 | **mV**

- **Load regulation**
 - **V_I** = 24 V, 0-100% of max I_O
 - **max** 26 | **typ** 33 | | **mV**

- **Load transient voltage deviation**
 - **V_I** = 24 V, Load step 50-75-50% of max I_O, di/dt = 100 mAV/µs
 - **±275** | **±500** | | **mV**

- **t_b** Load transient recovery time
 - **max** 250 | **typ** 500 | | **µs**

- **t_r** Ramp-up time (from 10—90% of V_O)
 - **max** 5 | **typ** 10 | | **ms**

- **t_s** Start-up time (from V_I connection to 90% of V_O)
 - **max** 8 | **typ** 15 | | **ms**

- **t_{RC}** RC start-up time (from V_I connection to 90% of V_O)
 - **max** I_O
 - **max** 2 | **typ** 5 | | **ms**

RC

- **Sink current**
 - See operating information
 - **max** 10 | | | **mA**

- **Trigger level**
 - Decreasing / Increasing RC-voltage
 - **max** 0.8/2.5 | | | **V**

- **I_O** Output current
 - **min** 0 | **typ** 7 | | **A**

- **I_{in}** Current limit threshold
 - **V_I** = 24 V, **T_{P1}** < max **T_{P1}**
 - **max** 11.8 | **max** 14 | | **A**

- **I_{sc}** Short circuit current
 - **T_{P1}** = 25°C, see Note 1
 - **max** 1.97 | | | **A**

- **C_{out}** Recommended Capacitive Load
 - **T_{P1}** = 25°C
 - **max** I_O
 - **max** 0 | | 15000 | **µF**

- **V_{ripple & noise}** Output ripple & noise
 - See ripple & noise section, **V_B**
 - **max** I_O, see Note 2
 - **max** 12 | **max** 24 | | **mVp-p**

- **OVP** Over voltage protection
 - **T_{P1}** = +25°C, **V_I** = 24 V, 0-100% of max I_O
 - **max** 4.3 | | | **V**

Note 1: Output current (RMS), hiccup mode

Note 2: Measured with 0.1 µF ceramic Cap. and 10 µF tantalum (or EE) Cap. cross to output.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics
3.3 V, 7 A / 23.1 W

Efficiency
![Efficiency graph](image1)

Efficiency vs. load current and input voltage at \(T_{P1} = +25^\circ\text{C} \).

Power Dissipation
![Power Dissipation graph](image2)

Dissipated power vs. load current and input voltage at \(T_{P1} = +25^\circ\text{C} \).

Output Current Derating
![Output Current Derating graph](image3)

Available load current vs. ambient air temperature and airflow at \(V = 24 \text{ V} \). See Thermal Consideration section.

Current Limit Characteristics
![Current Limit Characteristics graph](image4)

Output voltage vs. load current at \(I_O > \text{max } I_O \) at \(T_{P1} = +25^\circ\text{C} \).
Typical Characteristics
3.3 V, 7 A / 23.1 W

Start-up

Output disabled by removing VI at:

Output disabled by removing VI at:

Top trace: output voltage (2 V/div.).

Top trace: output voltage (2 V/div.).

Bottom trace: input voltage (10 V/div.).

Bottom trace: input voltage (10 V/div.).

Time scale: (200 ms/div.).

Time scale: (200 ms/div.).

Start-up enabled by connecting VI at:

Start-up enabled by connecting VI at:

TP1 = +25°C, VI = 24 V,

TP1 = +25°C, VI = 24 V,

IO = 7 A resistive load.

IO = 7 A resistive load.

Output Ripple & Noise

Output Load Transient Response

Output voltage ripple at:

Output voltage response to load current step-change (3.5-5.25-3.5 A) at:

Trace: output voltage (10 mV/div.).

Trace: output voltage (200 mV/div.).

20 MHz bandwidth

Time scale: (2 ms/div.)

Time scale: (2 ms/div.)

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[R_{\text{ADJ_UP}} = \left(\frac{1.9528}{\Delta} - 12 \right) \text{k}\Omega \]

Example:

To trim up the 3.3 V model by 8% to 3.56 V the required external resistor is:

\[R_{\text{ADJ_UP}} = \left(\frac{1.9528}{0.08} - 12 \right) = 12.41 \text{k}\Omega \]

Example:

To trim down the 3.3 V model by 7% to 3.07 V the required external resistor is:

\[R_{\text{ADJ_DOWN}} = \left(\frac{1.8627}{0.07} - 15.815 \right) = 10.79 \text{k}\Omega \]

Output Voltage Adjust, Decrease:

\[R_{\text{ADJ_DOWN}} = \left(\frac{1.8627}{\Delta} - 15.815 \right) \text{k}\Omega \]

Output Voltage = 3.3V

PKE 3310 PI
Electrical Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage range</td>
<td></td>
<td>9</td>
<td>36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>Internal input capacitance</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Output power</td>
<td></td>
<td>0</td>
<td>30</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Efficiency</td>
<td>50% of max Io, Vi = 12 V</td>
<td>90</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max Io, Vi = 12 V</td>
<td>88</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>50% of max Io, Vi = 24 V</td>
<td>89</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max Io, Vi = 24 V</td>
<td>90</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>max Io</td>
<td>3.3</td>
<td>5.5</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Input idling power</td>
<td>Io = 0 A, Vi = 24 V</td>
<td>0.2</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Input standby power</td>
<td>V1 = 24 V (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>0-100% of max Io</td>
<td>238</td>
<td>280</td>
<td>322</td>
<td>kHz</td>
</tr>
<tr>
<td>Output voltage initial setting and accuracy</td>
<td>Tp1 = +25°C, V1 = 24 V, Io = 7 A</td>
<td>4.95</td>
<td>5</td>
<td>5.05</td>
<td>V</td>
</tr>
<tr>
<td>Output adjust range</td>
<td>See operating information</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage tolerance band</td>
<td>0-100% of max Io</td>
<td>4.85</td>
<td>5.15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Idling voltage</td>
<td>Io = 0 A</td>
<td>4.85</td>
<td>5.15</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>max Io</td>
<td>5</td>
<td>10</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Load regulation</td>
<td>V1 = 24 V, 0-100% of max Io</td>
<td>30</td>
<td>50</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Load transient voltage deviation</td>
<td>V1 = 24 V, Load step 50-75-50% of max Io, dI/dt = 100 mA/µs</td>
<td>±275</td>
<td>±500</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Load transient recovery time</td>
<td></td>
<td>250</td>
<td>500</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Ramp-up time</td>
<td>(from 10–90% of Vo)</td>
<td>5</td>
<td>10</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Start-up time</td>
<td>(from Vi connection to 90% of Vo)</td>
<td>8</td>
<td>15</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>RC start-up time</td>
<td>(from Vref connection to 90% of Vo)</td>
<td>max Io</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Sink current</td>
<td>See operating information</td>
<td>10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Trigger level</td>
<td>Decreasing / Increasing RC-voltage</td>
<td>0.8/2.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output current</td>
<td></td>
<td>0</td>
<td>6</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Current limit threshold</td>
<td>V1 = 24 V, Tp1 < max Tp1</td>
<td>9.6</td>
<td>12</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Short circuit current</td>
<td>Tp1 = 25°C, See Note 1</td>
<td>1.57</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Recommended Capacitive Load</td>
<td>Tp1 = 25°C</td>
<td>0</td>
<td>8000</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Output ripple & noise</td>
<td>See ripple & noise section, Vo1 max Io, see Note 2</td>
<td>22</td>
<td>24</td>
<td></td>
<td>mVp-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Tp1 = +25°C, V1 = 24 V, 0-100% of max Io</td>
<td>6.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Output current (RMS), hiccup mode

Note 2: Measured with 0.1 µF ceramic Cap. and 10 µF tantalum (or EE) Cap. cross to output.
Technical Specification

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics

5 V, 6 A / 30 W

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{Pi} = +25^\circ$C.

Power Dissipation

![Power Dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{Pi} = +25^\circ$C.

Output Current Derating

![Output Current Derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_i = 24$ V. See Thermal Consideration section.

Current Limit Characteristics

![Current Limit Characteristics graph](image)

Output voltage vs. load current at $I_o > max$ I_o at $T_{Pi} = +25^\circ$C.
Technical Specification

PKE 3000 series Direct Converters

Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics

5 V, 6 A / 30 W

Start-up

- **Start-up enabled by connecting V1 at:**
 - $T_P = +25^\circ C$, $V_1 = 24$ V,
 - $I_o = 6$ A resistive load.

- **Top trace:** output voltage (2 V/div.).
 - **Bottom trace:** input voltage (10 V/div.).
 - **Time scale:** (200 ms/div.).

Shut-down

- **Output voltage disabled by removing V1 at:**
 - $T_P = +25^\circ C$, $V_1 = 24$ V,
 - $I_o = 6$ A resistive load.

- **Top trace:** output voltage (2 V/div.).
 - **Bottom trace:** input voltage (10 V/div.).
 - **Time scale:** (200 ms/div.).

Output Ripple & Noise

- **Output voltage ripple at:**
 - $T_P = +25^\circ C$, $V_1 = 24$ V,
 - $I_o = 6$ A resistive load.

- **Trace:** output voltage (20 mV/div.).
 - **Time scale:** (5 µs/div.).
 - **20 MHz bandwidth**

Output Load Transient Response

- **Output voltage response to load current step-change (3.0-4.5-3.0 A) at:**
 - $T_P = +25^\circ C$, $V_1 = 24$ V.

- **Top trace:** output voltage (500 mV/div.).
 - **Bottom trace:** load current (2 A/div.).
 - **Time scale:** (2 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

\[
R_{\text{ADJ_UP}} = \left(\frac{1.5}{\Delta} - 10\right) \text{k}\Omega
\]

\[
R_{\text{ADJ_DOWN}} = \left(\frac{1.5}{\Delta} - 13\right) \text{k}\Omega
\]

Output Voltage = 5.0V

Example:

To trim up the 5.0 V model by 8% to 5.4 V the required external resistor is:

\[
R_{\text{ADJ_UP}} = \left(\frac{1.5}{0.08} - 10\right) = 8.75 \text{ k}\Omega
\]

Example:

To trim down the 5.0 V model by 7% to 4.65 V the required external resistor is:

\[
R_{\text{ADJ_DOWN}} = \left(\frac{1.5}{0.07} - 13\right) = 8.43 \text{ k}\Omega
\]
Electrical Specification

PKE 3000 series

Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3313 PI

12 V, 2.5 A / 30 W

\(T_{P1} = -40 \) to 115°C, \(V_i = 9 \) to 36 V, unless otherwise specified under Conditions.

Typical values given at: \(T_{P1} = +25°C, V_i = 24 V \), max \(I_o \), unless otherwise specified under Conditions.

Additional \(C_{in} = 220 \mu F, C_{out} = 0.1 \mu F \) ceramic Cap. + 10 \mu F \(F \)-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i)</td>
<td>Input voltage range</td>
<td>9</td>
<td></td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>(V_{off})</td>
<td>Turn-off input voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Decreasind input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>(V_{on})</td>
<td>Turn-on input voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>(C_{i})</td>
<td>Internal input capacitance</td>
<td></td>
<td></td>
<td>33</td>
<td>\mu F</td>
</tr>
<tr>
<td>(P_o)</td>
<td>Output power</td>
<td>0</td>
<td></td>
<td>30</td>
<td>W</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efficiency</td>
<td>50% of max (I_o, V_i = 12 V)</td>
<td>91</td>
<td>90</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max (I_o, V_i = 12 V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% of max (I_o, V_i = 24 V)</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (I_o, V_i = 24 V)</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_d)</td>
<td>Power Dissipation</td>
<td>max (I_o)</td>
<td>2.5</td>
<td>4</td>
<td>W</td>
</tr>
<tr>
<td>(P_i)</td>
<td>Input idling power</td>
<td>(I_o = 0 A, V_i = 24 V)</td>
<td>0.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(P_{RC})</td>
<td>Input standby power</td>
<td>(V_i = 24 V) (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(t_s)</td>
<td>Switching frequency</td>
<td>0-100% of max (I_o)</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
</tbody>
</table>

\(V_{in} \) Output voltage initial setting and accuracy

\(T_{P1} = +25°C, V_i = 24 V, I_o = 6 A \)

\(11.88 \) \(12 \) \(12.12 \) \(V \)

\(V_o \) Output adjust range

See operating Information

\(10.8 \) \(12 \) \(13.2 \) \(V \)

\(V_o \) Output voltage tolerance band

0-100% of max \(I_o \)

\(11.64 \) \(12.36 \) \(V \)

\(V_o \) Idling voltage

\(I_o = 0 A \)

\(11.64 \) \(12.36 \) \(V \)

\(V_o \) Line regulation

\(\text{max} \(I_o \) \)

\(12 \) \(24 \) \(mV \)

\(V_o \) Load regulation

\(V_i = 24 V, 0-100\% \text{ of max } I_o \)

\(60 \) \(120 \) \(mV \)

\(V_o \) Load transient voltage deviation

\(V_i = 24 V, \text{ Load step 50-75-50\% of max } I_o, \)

\(\text{d}I/\text{d}t = 100 \text{mA} / \mu s \)

\(\pm 275 \) \(\pm 500 \) \(mV \)

\(t_o \) Load transient recovery time

\(\text{d}I/\text{d}t = 100 \text{mA} / \mu s \)

\(250 \) \(500 \) \(\mu s \)

\(t_i \) Ramp-up time

(from 10-90\% of \(V_o \))

\(5 \) \(10 \) \(ms \)

\(t_s \) Start-up time

(from \(V_o \) connection to 90\% of \(V_o \))

\(8 \) \(15 \) \(ms \)

\(t_{RC} \) RC start-up time

(from \(V_{in} \) connection to 90\% of \(V_o \))

\(\text{max } I_o \)

\(2 \) \(5 \) \(ms \)

\(RC \) Sink current

See operating Information

\(10 \) \(mA \)

\(I_o \) Output current

\(0 \) \(2.5 \) \(A \)

\(I_{in} \) Current limit threshold

\(V_i = 24 V, T_{P1} < \text{max } T_{P1} \)

\(4.2 \) \(5.0 \) \(A \)

\(I_{sc} \) Short circuit current

\(T_{P1} = 25°C, \) see Note 1

\(1.14 \) \(A \)

\(C_{cut} \) Recommended Capacitive Load

\(T_{P1} = 25°C \)

\(0 \) \(3000 \) \(\mu F \)

\(V_{out} \) Output ripple & noise

See ripple & noise section, \(V_{in} \)

\(\text{max } I_o \), see Note 2

\(35 \) \(70 \) \(mVp-p \)

\(OVP \) Over voltage protection

\(T_{P1} = +25°C, V_i = 24 V, 0-100\% \text{ of max } I_o \)

\(15 \) \(V \)

Note 1: Output current (RMS), hiccup mode

Note 2: Measured with 0.1 \mu F ceramic Cap. and 10 \mu F tantalum (or EE) Cap. cross to output.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics
12 V, 2.5 A / 30 W

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Power Dissipation

![Power Dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Output Current Derating

![Output Current Derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_i = 24$ V. See Thermal Consideration section.

Current Limit Characteristics

![Current Limit Characteristics graph](image)

Output voltage vs. load current at $I_0 > max I_0$ at $T_{P1} = +25^\circ C$.

PKE 3313 PI
Typical Characteristics
12 V, 2.5 A / 30 W

Start-up

Start-up enabled by connecting VI at:
TP1 = +25°C, VI = 24 V,
I0 = 2.5 A resistive load.

Top trace: output voltage (5 V/div).
Bottom trace: input voltage (10 V/div).
Time scale: (200 ms/div).

Output Ripple & Noise

Output voltage ripple at:
TP1 = +25°C, VI = 24 V,
I0 = 2.5 A resistive load.

Trace: output voltage (20 mV/div).
Time scale: (5 µs/div).
20 MHz bandwidth

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[R_{\text{ADJ_UP}} = \left(\frac{3.5998}{\Delta} - 24 \right) \text{k}\Omega \]

Output Voltage Adjust, Decrease:

\[R_{\text{ADJ_DOWN}} = \left(\frac{3.5796}{\Delta} - 31.179 \right) \text{k}\Omega \]

Example:
To trim up the 12 V model by 8% to 12.96V the required external resistor is:

\[R_{\text{ADJ_UP}} = \left(\frac{3.5998}{0.08} - 24 \right) = 21 \text{k}\Omega \]

Example:
To trim down the 12 V model by 7% to 11.16V the required external resistor is:

\[R_{\text{ADJ_DOWN}} = \left(\frac{3.5796}{0.07} - 31.179 \right) = 19.96 \text{k}\Omega \]

Output Voltage = 12V

Output Load Transient Response

Output voltage response to load current step-change (1.25-1.875-1.25 A) at:
TP1 = +25°C, VI = 24 V.

Top trace: output voltage (500 mV/div).
Bottom trace: load current (1 A/div).
Time scale: (2 ms/div.)
Electrical Specification

PKE 3000 series Direct Converters

Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3315 PI

15 V, 2 A / 30 W

$T_{P1} = -40$ to 115°C, $V_i = 9$ to 36 V, unless otherwise specified under Conditions.

Typical values given at: $T_{P1} = +25^\circ$C, $V_i = 24$ V, max I_o, unless otherwise specified under Conditions.

Additional $C_i = 220 \mu F$, $C_{out} = 0.1 \mu F$ ceramic Cap. + $10 \mu F$ EE-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i Input voltage range</td>
<td></td>
<td>9</td>
<td>36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{off} Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{on} Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
<td>V</td>
</tr>
<tr>
<td>C_i Internal input capacitance</td>
<td></td>
<td>33</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P_o Output power</td>
<td></td>
<td>0</td>
<td>30</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η Efficiency</td>
<td>50% of max I_o, $V_i = 12$ V</td>
<td>91</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max I_o, $V_i = 12$ V</td>
<td>88</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>50% of max I_o, $V_i = 24$ V</td>
<td>92</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max I_o, $V_i = 24$ V</td>
<td>91</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>P_{d} Power Dissipation</td>
<td>max I_o</td>
<td>2.5</td>
<td>5.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P_{i} Input idling power</td>
<td>$I_o = 0$ A, $V_i = 24$ V</td>
<td>0.2</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P_{stand} Input standby power</td>
<td>$V_i = 24$ V (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>f_s Switching frequency</td>
<td>0-100% of max I_o</td>
<td>238</td>
<td>280</td>
<td>322</td>
<td>kHz</td>
</tr>
<tr>
<td>V_{oi} Output voltage initial setting</td>
<td>$T_{P1} = +25^\circ$C, $V_i = 24$ V, $I_o = 2$ A</td>
<td>14.85</td>
<td>15</td>
<td>15.15</td>
<td>V</td>
</tr>
<tr>
<td>and accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_o Output adjust range</td>
<td>See operating information</td>
<td>13.5</td>
<td>15</td>
<td>16.5</td>
<td>V</td>
</tr>
<tr>
<td>V_o Output voltage tolerance band</td>
<td>0-100% of max I_o</td>
<td>14.55</td>
<td>15.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{idle} Idling voltage</td>
<td>$I_o = 0$ A</td>
<td>14.55</td>
<td>15.45</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{max} Line regulation</td>
<td>max I_o</td>
<td>15</td>
<td>30</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>I_{load} Load regulation</td>
<td>$V_i = 24$ V, 0-100% of max I_o</td>
<td>100</td>
<td>150</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V_o Load transient voltage deviation</td>
<td>$V_i = 24$ V, Load step 50-75-50% of max I_o, $dV/dt = 100$ mA/µs</td>
<td>±275</td>
<td>±500</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>t_o Load transient recovery time</td>
<td></td>
<td>250</td>
<td>500</td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td>100% of max I_o</td>
<td>5</td>
<td>10</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>100% of max I_o</td>
<td>8</td>
<td>15</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>t_{sec} RC start-up time (from V_o)</td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>I_{sec} RC sink current (from V_o)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>$Note 1: $</td>
<td>Output Current (RMS), hiccup mode</td>
<td>0</td>
<td>2</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I_{lim} Current limit threshold</td>
<td>$V_i = 24$ V, $T_{P1} < max T_{P1}$</td>
<td>3.25</td>
<td>4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I_{sec} Short circuit current</td>
<td>$T_{P1} = +25^\circ$C, see Note 1</td>
<td>1.02</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C_{sec} Recommended Capacitive Load</td>
<td>$T_{P1} = +25^\circ$C</td>
<td>0</td>
<td>1200</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>V_{sec} Output ripple & noise</td>
<td>See ripple & noise section, V_{oi}</td>
<td>30</td>
<td>60</td>
<td></td>
<td>mVP-p</td>
</tr>
<tr>
<td></td>
<td>max I_o, see Note 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVP Over voltage protection</td>
<td>$T_{P1} = +25^\circ$C, $V_i = 24$ V, 0-100% of max I_o</td>
<td>18</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Output Current (RMS), hiccup mode

Note 2: Measured with $0.1 \mu F$ ceramic Cap. and $10 \mu F$ tantalum (or EE) Cap. cross to output.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics
15 V, 2 A / 30 W

Efficiency

![Efficiency graph]

Efficiency vs. load current and input voltage at $T_{PI} = +25^\circ C$.

Power Dissipation

![Power Dissipation graph]

Dissipated power vs. load current and input voltage at $T_{PI} = +25^\circ C$.

Output Current Derating

![Output Current Derating graph]

Available load current vs. ambient air temperature and airflow at $V_i = 24$ V. See Thermal Consideration section.

Current Limit Characteristics

![Current Limit Characteristics graph]

Output voltage vs. load current at $I_o > max I_o$ at $T_{PI} = +25^\circ C$.
Typical Characteristics
15 V, 2 A / 30 W

Start-up enabled by connecting VI at:
- Top trace: output voltage (10 V/div.).
- Bottom trace: input voltage (10 V/div.).

Output voltage ripple at:
- Top trace: output voltage (20 mV/div.).
- Time scale: (5 µs/div.).

Output Load Transient Response
Output voltage response to load current step-change (1.0-1.5-1.0 A) at:
- Top trace: output voltage (500 mV/div.).
- Bottom trace: load current (1 A/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[R_{\text{ADJ_UP}} = \left(\frac{4.4993}{\Delta} - 30\right) \text{k}\Omega \]

Output Voltage Adjust, Decrease:

\[R_{\text{ADJ_DOWN}} = \left(\frac{4.6}{\Delta} - 39.099\right) \text{k}\Omega \]

Example:
To trim up the 15 V model by 8% to 16.2V the required external resistor is:

\[R_{\text{ADJ_UP}} = \left(\frac{4.4993}{0.08} - 30\right) = 26.24 \text{k}\Omega \]

Example:
To trim down the 15 V model by 7% to 13.95V the required external resistor is:

\[R_{\text{ADJ_DOWN}} = \left(\frac{4.6}{0.07} - 39.099\right) = 26.62 \text{k}\Omega \]

Output Voltage = 15V
Electrical Specification

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3316Z PI

24 V, 1.25 A / 30 W

$T_{P1} = -40$ to 105°C, $V_i = 9$ to 36V, unless otherwise specified under Conditions.

Typical values given at: $T_{P1} = +25^\circ$C, $V_i = 24$ V, max I_o, unless otherwise specified under Conditions.
Additional $C_i = 220 \mu F$, $C_{out} = 10 \mu F$ ceramic Cap. $+22 \mu F$ E-Cap. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>9</td>
<td></td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>33</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>0</td>
<td></td>
<td>30</td>
<td>W</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_o, $V_i = 12$ V</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, $V_i = 12$ V</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I_o, $V_i = 24$ V</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, $V_i = 24$ V</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_d</td>
<td>Power Dissipation</td>
<td>max I_o</td>
<td>3.4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>P_i</td>
<td>Input idling power</td>
<td>$I_o = 0$ A, $V_i = 24$ V</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{AC}</td>
<td>Input standby power</td>
<td>$V_i = 24$ V (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>0-100 % of max I_o</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
</tbody>
</table>

V_o

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>$T_{P1} = +25^\circ$C, $V_i = 24$ V, $I_o = 1.25$ A</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_o</td>
<td>Output adjust range</td>
<td>See operating information</td>
<td>21.6</td>
<td>24</td>
<td>26.4</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>0-100% of max I_o</td>
<td>23.4</td>
<td></td>
<td>24.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Idling voltage</td>
<td>$I_o = 0$ A</td>
<td>23.4</td>
<td></td>
<td>24.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>max I_o</td>
<td>20</td>
<td></td>
<td>48</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>$V_i = 24$ V, 25-100% of max I_o</td>
<td>20</td>
<td></td>
<td>240</td>
<td>mV</td>
</tr>
<tr>
<td>V_s</td>
<td>Load transient voltage deviation</td>
<td>$V_i = 24$ V, Load step 50-75-50% of max I_o, $di/dt = 100$mA/µs</td>
<td>±275</td>
<td></td>
<td>±500</td>
<td>mV</td>
</tr>
<tr>
<td>t_r</td>
<td>Load transient recovery time</td>
<td>T_{P1}</td>
<td>250</td>
<td></td>
<td>500</td>
<td>µs</td>
</tr>
<tr>
<td>t_r</td>
<td>Ramp-up time (from 10-90% of V_o)</td>
<td>100% of max I_o</td>
<td>5</td>
<td></td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>t_s</td>
<td>Start-up time (from V_i connection to 90% of V_o)</td>
<td>8</td>
<td></td>
<td>15</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>t_{RC}</td>
<td>RC start-up time (from V_{in} connection to 90% of V_o)</td>
<td>max I_o</td>
<td>2</td>
<td></td>
<td>5</td>
<td>ms</td>
</tr>
<tr>
<td>I_o</td>
<td>Current limit threshold</td>
<td>$V_i = 24$ V, $T_{P1} < max$ T_{P1}</td>
<td>1.875</td>
<td></td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>I_{sc}</td>
<td>Short circuit current</td>
<td>$T_{P1} = 25^\circ$C, see Note 1</td>
<td>0.95</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C_{out}</td>
<td>Recommended Capacitive Load</td>
<td>$T_{P1} = 25^\circ$C, see Note 2</td>
<td>0</td>
<td></td>
<td>470</td>
<td>µF</td>
</tr>
<tr>
<td>V_{ripple}</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, V_{in}</td>
<td>Max I_o, see Note 3</td>
<td>60</td>
<td>120</td>
<td>mVp-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td>$T_{P1} = +25^\circ$C, $V_i = 24$ V, 0-100% of max I_o</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Output Current (RMS), hiccup mode
Note 2: Test condition: Electronic Capacitor and full load
Note 3: Measured with 0.1 µF ceramic Cap. and 10 µF tantalum (or EE) Cap. cross to output.
Typical Characteristics

24 V, 1.25 A / 30 W

Efficiency

- Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ\text{C}$.

Power Dissipation

- Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ\text{C}$.

Output Current Derating

- Available load current vs. ambient air temperature and airflow at $V_i = 24$ V. See Thermal Consideration section.

Current Limit Characteristics

- Output voltage vs. load current at $I_o > \max I_o$ at $T_{P1} = +25^\circ\text{C}$.
Typical Characteristics
24 V, 1.25 A / 30 W

Start-up

Start-up enabled by connecting VI at:

\[T_{in} = +25^\circ C, \ V_I = 24 \ V, \ I_O = 1.25 \text{ A resistive load.} \]

Top trace: output voltage (10 V/div.).

Bottom trace: input voltage (10 V/div.).

Time scale: (200 ms/div.).

Output Ripple & Noise

Output voltage ripple at:

\[T_{in} = +25^\circ C, \ V_I = 24 \ V, \ I_O = 1.25 \text{ A resistive load.} \]

Trace: output voltage (20 mV/div.).

Time scale: (5 µs/div.)

20 MHz bandwidth

Output Load Transient Response

Output voltage response to load current step-change (0.625-0.937-0.625 A) at:

\[T_{in} = +25^\circ C, \ V_I = 24 \ V, \ \frac{dI}{dt} = 100 \text{ mA/\mu s} \]

\[C_{out} = 10 \mu F \text{ ceramic Cap.} + 22 \mu F \text{ E-Cap.} \]

Top trace: output voltage (500 mV/div.).

Bottom trace: load current (1 A/div.).

Time scale: (10 ms/div.)

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[R_{ADJ_UP} = \left(\frac{7.1319}{\Delta} - 56 \right) \text{k}\Omega \]

Output Voltage Adjust, Decrease:

\[R_{ADJ_DOWN} = \left(\frac{8.6681}{\Delta} - 71.8 \right) \text{k}\Omega \]

Example:

To trim up the 24V model by 8% to 25.92V the required external resistor is:

\[R_{ADJ_UP} = \left(\frac{7.1319}{0.08} - 56 \right) = 33.15 \text{ k}\Omega \]

Example:

To trim down the 24V model by 7% to 22.32V the required external resistor is:

\[R_{ADJ_DOWN} = \left(\frac{8.6681}{0.07} - 71.8 \right) = 52.03 \text{ k}\Omega \]
Technical Specification

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Electrical Specification
48 V, 0.625 A / 30 W

- **TP1**: -40°C to 115°C, **V1**: 9 to 36 V, unless otherwise specified under Conditions.
- **Typical values**: given at: **TP1** = +25°C, **VI** = 24 V, maxi **IO**, unless otherwise specified under Conditions.
- **Additional CIN**: 220 µF, COUT = 0.1 µF ceramic Cap. + 10 µF E-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Input voltage range</td>
<td>9</td>
<td>36</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>VOS</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Vot</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Ci</td>
<td>Internal input capacitance</td>
<td></td>
<td>33</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>Po</td>
<td>Output power</td>
<td>0</td>
<td>30</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>n</td>
<td>Efficiency</td>
<td>50% of max Io, VI = 12 V</td>
<td>91</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max Io, VI = 12 V</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max Io, VI = 24 V</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max Io, VI = 24 V</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>Power Dissipation</td>
<td>maxi Io</td>
<td>3.2</td>
<td>4.5</td>
<td>W</td>
</tr>
<tr>
<td>Pi</td>
<td>Input idling power</td>
<td>Io = 0 A, VI = 24 V</td>
<td>0.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>PnC</td>
<td>Input standby power</td>
<td>VI = 24 V (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>fS</td>
<td>Switching frequency</td>
<td>0-100 % of maxi Io</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
</tbody>
</table>

VOS
- **Output adjust range**: See operating information
- **Output voltage tolerance band**: 0-100% of maxi Io
- **Idling voltage**: Io = 0 A
- **Line regulation**: max Io
- **Load regulation**: VI = 24 V, 0-100% of maxi Io

VS
- **Load transient voltage deviation**: VI = 24 V, Load step 50-75-50% of maxi Io, di/dt = 100 mA/µs
- **tS**: Load transient recovery time
- **tR**: Ramp-up time
- **tS**: Start-up time
- **tC**: RC start-up time

RC
- **Sink current**: See operating information
- **Trigger level**: Decreasing / Increasing RC-voltage
- **Io**: Output current
- **Ii**: Current limit threshold
- **Isc**: Short circuit current
- **Cout**: Recommended Capacitive Load
- **VOS**: Output ripple & noise
- **OVP**: Over voltage protection

Note 1: Output Current (RMS), hiccup mode
Note 2: Measured with 0.1µF ceramic Cap. and 10 µF tantalum (or EE) Cap. cross to output.
Typical Characteristics

48 V, 0.625 A / 30 W

Efficiency

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Efficiency [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 VDC</td>
<td>90</td>
</tr>
<tr>
<td>12 VDC</td>
<td>85</td>
</tr>
<tr>
<td>24 VDC</td>
<td>80</td>
</tr>
<tr>
<td>36 VDC</td>
<td>75</td>
</tr>
</tbody>
</table>

Efficiency vs. load current and input voltage at $T_{PI} = +25^\circ C$.

Power Dissipation

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 VDC</td>
<td>5.0</td>
</tr>
<tr>
<td>12 VDC</td>
<td>4.0</td>
</tr>
<tr>
<td>24 VDC</td>
<td>3.0</td>
</tr>
<tr>
<td>36 VDC</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Dissipated power vs. load current and input voltage at $T_{PI} = +25^\circ C$.

Output Current Derating

Available load current vs. ambient air temperature and airflow at $V_i = 24$ V. See Thermal Consideration section.

Current Limit Characteristics

Output voltage vs. load current at $I_o > max I_o$ at $T_{PI} = +25^\circ C$.

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W
Typical Characteristics
48 V, 0.625 A / 30 W

Start-up

Start-up enabled by connecting Vi at:
TP1 = +25°C, Vi = 24 V,
Io = 0.625 A resistive load.

Top trace: output voltage (20 V/div.).
Bottom trace: input voltage (10 V/div).
Time scale: (200 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
TP1 = +25°C, Vi = 24 V,
Io = 0.625 A resistive load.

Trace: output voltage (20 mV/div.).
Time scale: (5 µs/div.).
20 MHz bandwidth

Output Load Transient Response

Output voltage response to load current step-change (0.312-0.468-0.312 A) at:
TP1 = +25°C, Vi = 24 V.

Top trace: output voltage (500 mV/div.).
Bottom trace: load current (200 mA/div.).
Time scale: (2 ms/div.).

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

\[R_{ADJ_UP} = \left(\frac{14.3215}{\Delta} - 100 \right) \, k\Omega \]

Output Voltage Adjust, Decrease:

\[R_{ADJ_DOWN} = \left(\frac{13.8785}{\Delta} - 128.2 \right) \, k\Omega \]

Example:
To trim up the 48 V model by 8% to 51.84V the required external resistor is:

\[R_{ADJ_UP} = \left(\frac{14.3215}{0.08} - 100 \right) = 79.02 \, k\Omega \]

Example:
To trim down the 48 V model by 7% to 44.64V the required external resistor is:

\[R_{ADJ_DOWN} = \left(\frac{13.8785}{0.07} - 128.2 \right) = 70.06 \, k\Omega \]
Electrical Specification

PKE 3000 series Direct Converters

Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3316H PI

54 V, 0.463 A / 25 W

\(T_{P1} = -40\) to 115\(^\circ\)C, \(V_i = 9\) to 36 V, unless otherwise specified under Conditions.

Typical values given at: \(T_{P1} = +25\)\(^\circ\)C, \(V_i = 24\) V, max \(I_o\), unless otherwise specified under Conditions.

Additional \(C_o = 220\ \mu F\), \(C_{out} = 0.1\ \mu F\) ceramic Cap. + 10 \(\mu F\) E-Cap. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i)</td>
<td>Input voltage range</td>
<td>9</td>
<td>36</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{off})</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>7.0</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>(V_{on})</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>8.0</td>
<td>8.5</td>
<td>9.0</td>
</tr>
<tr>
<td>(C_i)</td>
<td>Internal input capacitance</td>
<td>33</td>
<td>(\mu F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_o)</td>
<td>Output power</td>
<td>0</td>
<td>30</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efficiency</td>
<td>50% of max (I_o), (V_i = 12) V</td>
<td>91</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max (I_o), (V_i = 12) V</td>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max (I_o), (V_i = 24) V</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max (I_o), (V_i = 24) V</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_d)</td>
<td>Power Dissipation</td>
<td>max (I_o)</td>
<td>3</td>
<td>3.8</td>
<td>W</td>
</tr>
<tr>
<td>(P_{id})</td>
<td>Input idling power</td>
<td>(I_o = 0\ A), (V_i = 24) V</td>
<td>0.2</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(P_{nc})</td>
<td>Input standby power</td>
<td>(V_i = 24) V (turned off with RC)</td>
<td>0.1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(f_s)</td>
<td>Switching frequency</td>
<td>0-100% of max (I_o)</td>
<td>238</td>
<td>280</td>
<td>322</td>
</tr>
</tbody>
</table>

\(V_{ci}\)	Output voltage initial setting and accuracy	\(T_{P1} = +25\)\(^\circ\)C, \(V_i = 24\) V, \(I_o = 0.463\) A	53.46	54	54.54	V
\(V_o\)	Output adjust range	See operating information	48.6	54	59.4	V
	Output voltage tolerance band	0-100% of max \(I_o\)	52.38	55.62	V	
	Idling voltage	\(I_o = 0\) A	52.38	55.62	V	
	Line regulation	max \(I_o\)	60	108	mV	
	Load regulation	\(V_i = 24\) V, 0-100% of max \(I_o\)	300	540	mV	
\(V_s\)	Load transient voltage deviation	\(V_i = 24\) V, Load step 50-75-50% of max \(I_o\), \(di/dt = 100\ \mu A/\mu s\)	\(\pm 275\)	\(\pm 500\)	mV	
\(t_{ls}\)	Load transient recovery time		250		\(\mu s\)	
\(t_r\)	Ramp-up time (from 10–90% of \(V_o\))	100% of max \(I_o\)	5	10	ms	
\(t_s\)	Start-up time (from \(V_o\) connection to 90% of \(V_o\))		8	15	ms	
\(t_{nc}\)	RC start-up time (from \(V_{nc}\) connection to 90% of \(V_o\))	max \(I_o\)	2	5	ms	
RC	Sink current	See operating information	10		mA	
	Trigger level	Decreasing / Increasing RC-voltage	0.8/2.5		V	
\(I_o\)	Output current	0	0.463		A	
\(I_{ct}\)	Current limit threshold	\(V_i = 24\) V, \(T_{P1} <\) max \(T_{P1}\)	0.75	0.926		A
\(I_{sc}\)	Short circuit current	\(T_{P1} = 25\)\(^\circ\)C, see Note 1	0.37		A	
\(C_{out}\)	Recommended Capacitive Load	\(T_{P1} = 25\)\(^\circ\)C	0	100	\(\mu F\)	
\(V_{locc}\)	Output ripple & noise	See ripple & noise section, \(V_{ci}\)	max \(I_o\), see Note 2	80	160	mVp-p
OVP	Over voltage protection	\(T_{P1} = +25\)\(^\circ\)C, \(V_i = 24\) V, 0-100% of max \(I_o\)	62		V	

Note 1: Output Current (RMS), hiccup mode

Note 2: Measured with 0.1 \(\mu F\) ceramic Cap. and 10 \(\mu F\) tantalum (or EE) Cap. cross to output.
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

Typical Characteristics

| Voltage | Output Current | Power
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>54 V</td>
<td>4.63 A</td>
<td>25 W</td>
</tr>
</tbody>
</table>

Efficiency

Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Power Dissipation

Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Output Current Derating

Available load current vs. ambient air temperature and airflow at $V_i = 24 V$. See Thermal Consideration section.

Current Limit Characteristics

Output voltage vs. load current at $I_o > max I_o$ at $T_{P1} = +25^\circ C$.
Typical Characteristics
54 V, 0.463 A / 25 W

Start-up enabled by connecting VI at:
TP1 = +25°C, VI = 24 V,
Io = 0.463 A resistive load.

Top trace: output voltage (20 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: (200 ms/div.).

Output voltage ripple at:
TP1 = +25°C, VI = 24 V,
Io = 0.463 A resistive load.
Trace: output voltage (20 mV/div.).
Time scale: (5 µs/div.).
20 MHz bandwidth

Output Voltage Adjust (TRIM UP/TRIM DOWN)

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust, Increase:

$$ R_{ADJ_UP} = \left(\frac{16.2}{\Delta} - 110\right) \text{k}\Omega $$

Output Voltage Adjust, Decrease:

$$ R_{ADJ_DOWN} = \left(\frac{16.2}{\Delta} - 142.4\right) \text{k}\Omega $$

Example:
To trim up the 54 V model by 8% to 58.32 V the required external resistor is:

$$ R_{ADJ_UP} = \left(\frac{16.2}{0.08} - 110\right) = 92.5 \text{k}\Omega $$

Example:
To trim down the 54 V model by 7% to 50.22V the required external resistor is:

$$ R_{ADJ_DOWN} = \left(\frac{16.2}{0.07} - 142.4\right) = 89.03 \text{k}\Omega $$

Output Voltage = 54V

Output Load Transient Response

Output voltage response to load current step-change (0.231-0.347-0.231 A) at:
TP1 = +25°C, VI = 24 V.
Top trace: output voltage (500 mV/div.).
Bottom trace: load current (200 mA/div.).
Time scale: (2 ms/div.).

PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

PKE 3316H PI
PKE 3000 series Direct Converters
Input 9 - 36 V, Output up to 7 A / 30 W

EMC Specification
Conducted EMI measured according to EN55032, CISPR 32 and FCC part 15J (see test set-up). See Design Note 029 for further information.

The fundamental switching frequency is 400 kHz for PKE 3211 PI at $V_i = 24$ V and max I_o.

Conducted EMI Input terminal value (PKE 3211 PI typ.)

Optional external filter for class B
Suggested external input filter in order to meet class B in EN 55032, CISPR 32 and FCC part 15J.

Filter components:
- $C_1, C_3 = 1 \mu F$
- $C_{2,4} = 47 \mu F$
- $C_5 = 1 \mu F$
- $C_{Y1,2,3,4,5,6} = 1 \text{nF}$
- $L_1 = 1500 \mu H$

EMI without filter

EMI with filter

Conducted EMI Input terminal value (PKE 3316Z PI typ.)

The fundamental switching frequency is 280 kHz for PKE 3316Z PI at $V_i = 24$ V and max I_o.

Optional external filter for class A
Suggested external input filter in order to meet class A in EN 55032, CISPR 32 and FCC part 15J.

Filter components:
- $C_{Y03, Y04} : 680 \text{ pF (Y CAP.) + bead core*2 (RH type)}$
- $C_{Y05} : 2.2 \text{ nF (Y CAP.) + bead core*2}$
- $C_{Y07} : 100 \text{ pF (Y CAP.) + bead core*2}$
- $C_{01, C02, C03, C04, C05, C06} : 100 \mu F (\text{AL-CAP.})$
- $L_1 : 1.6 \text{ mH (CM CHOKE)}$
- $C_{Y04, Y06, Y08} \text{ were not assembled in test}$

EMI without filter

EMI with filter

EMI with filter
Layout recommendations

The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.

Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.
Operating information

Input Voltage
The input voltage range is 9 to 36 Vdc.
At input voltages exceeding 36 V, the power loss will be higher than at normal input voltage and T_{fp} must be limited to absolute max $+110^\circ C$ for PKE 32XX variants' products and $+115^\circ C$ for PKE 33XXX variants' products. The absolute maximum continuous input voltage is 36 Vdc.

Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependant on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like zener diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 examines the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect.

Turn-off Input Voltage
The products monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is about 1 V.

Remote Control (RC)
The products are fitted with a remote control function referenced to the primary negative input connection -In, with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor to +In.

The external device must provide a minimum required sink current to guarantee a voltage not higher than maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 3 – 6 V.

The standard product is provided with "negative logic" (Active Low) remote control. When the RC pin is left open, or connected to a voltage higher than 2.5V referenced to -In, the product will be off when the input voltage is applied. To turn on the product the RC pin should be connected to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin must be wired directly to -In.

The second option is “positive logic” (Active High) remote control, which can be ordered by adding the suffix “P” to the end of the part number. In this case, when the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the -In. The product will restart automatically when this connection is opened.

See Design Note 021 for detailed information.

Input and Output Impedance
The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The products are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

If the input voltage source contains significant inductance, the addition of a 22 - 100 µF capacitor across the input of the PKE 32XX (15W variant) product or a 220 µF capacitor across the input of the PKE 33XXX (30W variant) product will ensure stable operation. The capacitor is not required when powering the product from an input source with an inductance below 10 µH. The minimum required capacitance value depends on the output power and the input voltage. The higher output power the higher input capacitance is needed. Approximately doubled capacitance value is required for a 24 V input voltage source compared to a 48 V input voltage source.

External Decoupling Capacitors
When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PWB layouts and cabling.

External decoupling capacitors will become part of the product's control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical specification. The ESR of the capacitors is a very important parameter. Stable operation is guaranteed with a verified ESR value of >5 mΩ across the output connections.

For further information please contact your local Flex representative.
Output Voltage Adjust
The products have an Output Voltage Adjust pin (Trim). This pin can be used to adjust the output voltage above or below Output voltage initial setting. When increasing the output voltage, the voltage at the output pins must be kept below the threshold of the over voltage protection, (OVP) to prevent the product from shutting down. At increased output voltages the maximum power rating of the product remains the same, and the max output current must be decreased correspondingly.
To increase the voltage the resistor should be connected between the Trim pin and -Out pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product. To decrease the output voltage, the resistor should be connected between the Trim pin and +Out pin.

Over Temperature Protection (OTP)
The products are protected from thermal overload by an internal over temperature shutdown circuit. When T_P, as defined in thermal consideration section exceeds 115°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >5°C below the temperature threshold.

Over Voltage Protection (OVP)
The converters have output over voltage protection that will prevent output voltage to exceed the specified value in technical specification.
The converter will limit the output voltage to the maximum level. Converters will resume normal operation automatically after removal of the over voltage condition.

Over Current Protection (OCP)
The products include current limiting circuitry for protection at continuous overload. The output voltage will decrease towards zero for output currents in excess of max output current (max I_O). The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.

Thermal Consideration
General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PWB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_I = 24$ V.
The product is tested on a 107 x 45 mm, 70 µm (2 oz), 1-layer test board in a wind box with 370 x 220 mm.
Definition of product operating temperature

The product operating temperature is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1. The temperature at this position (T_{P1}) should not exceed the maximum temperatures in the table below. Temperature above maximum T_{P1}, measured at the reference point P1 are not allowed and may cause permanent damage.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Reference point (PKE 32XX variant)</td>
<td>$T_{P1}=110^\circ$ C</td>
</tr>
</tbody>
</table>

Reference point on PKE 32XX variant

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Reference point (PKE 33XX variant)</td>
<td>$T_{P1}=115^\circ$ C</td>
</tr>
</tbody>
</table>

Reference point on PKE 33XX variant

Connections

```
    1  6
   2   5
   3   4
```

Top view

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On/Off Control</td>
<td>Remote control</td>
</tr>
<tr>
<td>2</td>
<td>-Input</td>
<td>Negative input</td>
</tr>
<tr>
<td>3</td>
<td>+Input</td>
<td>Positive input</td>
</tr>
<tr>
<td>4</td>
<td>+Out</td>
<td>Positive output</td>
</tr>
<tr>
<td>5</td>
<td>Trim</td>
<td>Output voltage adjust</td>
</tr>
<tr>
<td>6</td>
<td>-Out</td>
<td>Negative output</td>
</tr>
</tbody>
</table>
Mechanical Information -

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.

A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic clamshell trays.

<table>
<thead>
<tr>
<th>Tray Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surface resistance</td>
</tr>
<tr>
<td>Bakability</td>
</tr>
<tr>
<td>Tray thickness</td>
</tr>
<tr>
<td>Box capacity</td>
</tr>
<tr>
<td>Tray weight</td>
</tr>
</tbody>
</table>
Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>External visual inspection</td>
<td>IPC-E-610</td>
</tr>
<tr>
<td>Change of temperature (Temperature cycling)</td>
<td>IEC 60068-2-14 Na</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-55 to 105°C</td>
</tr>
<tr>
<td>Number of cycles</td>
<td>20</td>
</tr>
<tr>
<td>Dwell/transfer time</td>
<td>30 min/3 min</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 60068-2-1</td>
</tr>
<tr>
<td>Temperature T_A</td>
<td>-45°C</td>
</tr>
<tr>
<td>Duration</td>
<td>72 h</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-30</td>
</tr>
<tr>
<td>Temperature</td>
<td>45°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95 % RH</td>
</tr>
<tr>
<td>Duration</td>
<td>72 hours</td>
</tr>
<tr>
<td>Electrostatic discharge susceptibility</td>
<td>IEC 61340-3-1, JESD 22-A114</td>
</tr>
<tr>
<td>Human body model (HBM)</td>
<td>Class 2, 2000 V</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>IEC 60068-2-27 Ea</td>
</tr>
<tr>
<td>Peak acceleration</td>
<td>200 g</td>
</tr>
<tr>
<td>Duration</td>
<td>6 ms</td>
</tr>
<tr>
<td>Operational life test</td>
<td>MIL-STD-202G, method 108A</td>
</tr>
<tr>
<td>Duration</td>
<td>1000 h</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td>IEC 60068-2-20 Tb, method 1A</td>
</tr>
<tr>
<td>Solder temperature</td>
<td>270°C</td>
</tr>
<tr>
<td>Duration</td>
<td>10-13 s</td>
</tr>
<tr>
<td>Robustness of terminations</td>
<td>IEC 60068-2-21 Test Ua1</td>
</tr>
<tr>
<td>Through hole mount products</td>
<td>All leads</td>
</tr>
<tr>
<td>Solderability</td>
<td>IEC 60068-2-20 test Ta</td>
</tr>
<tr>
<td>Temperature, SnPb Eutectic</td>
<td>235°C</td>
</tr>
<tr>
<td>Temperature, Pb-free</td>
<td>245°C</td>
</tr>
<tr>
<td>Vibration, broad band random</td>
<td>IEC 61373</td>
</tr>
<tr>
<td>Frequency</td>
<td>5 to 150 Hz</td>
</tr>
<tr>
<td>RMS acceleration</td>
<td>5 grms</td>
</tr>
<tr>
<td>Duration</td>
<td>5 hrs in each direction</td>
</tr>
</tbody>
</table>