Key Features

- Industry standard case dimensions
 25.4 x 25.4 x 10.8 mm (1.00 x 1.00 x 0.43 inch)
- High efficiency, typ. 88% at 12 Vout Full load
- 1500 Vdc input to output isolation
- Meets safety requirements according to IEC/UL 60950-1
- MTBF 1 Mh

General Characteristics

- Output over voltage protection
- Input under voltage shutdown
- Over temperature protection
- Monotonic startup
- Output short-circuit protection
- Remote control
- Output voltage adjust function
- ISO 9001/14001 certified supplier

Safety Approvals

- [UL](https://www.ul.com)
- [RoHS](https://www.rohs.org)

Design for Environment

Meets requirements in high-temperature lead-free soldering processes.

Contents

- **Ordering Information** ... 2
- **General Information** ... 2
- **Safety Specification** ... 3
- **Absolute Maximum Ratings** .. 4
- **Electrical Specification** .. 5
 - 3.3 V, 4.5 A / 15 W
 - 5 V, 3 A / 15 W
 - 12 V, 1.25 A / 15 W
 - 15 V, 1 A / 15 W
- **EMC Specification** ... 17
- **Operating Information** .. 18
- **Thermal Consideration** ... 19
- **Connections** ... 20
- **Mechanical Information** ... 21
- **Soldering Information** ... 22
- **Delivery Information** .. 23
- **Product Qualification Specification** 24

PKE 5000 series Direct Converters

Input 18 - 75 V, Output up to 4.5 A / 15 W

© Flex
PKE 5000 series Direct Converters
Input 18 - 75 V, Output up to 4.5 A / 15 W

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKE 5210 PI</td>
<td>3.3 V, 4.5 A / 15 W</td>
</tr>
<tr>
<td>PKE 5211 PI</td>
<td>5.0 V, 3 A / 15 W</td>
</tr>
<tr>
<td>PKE 5213 PI</td>
<td>12 V, 1.25 A / 15 W</td>
</tr>
<tr>
<td>PKE 5215 PI</td>
<td>15 V, 1 A / 15 W</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Control logic</td>
<td>o</td>
</tr>
</tbody>
</table>

Example negative logic product with tray packaging would be PKE 5213 PI.

* Standard variant (i.e. no option selected).

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF = 1/λ) is calculated at max output power and an operating ambient temperature (T_A) of +25°C. Flex uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure rate, λ</th>
<th>Std. deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 nFailures/h</td>
<td>86 nFailures/h</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKE 5000 series = 1 Mh.
MTBF at 90% confidence level = 0.9 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2017

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
Safety Specification

General information

PKE 3000 and PKE 5000 series DC/DC converters are designed in accordance with the safety standards IEC 60950-1 and UL 60950-1 Safety of Information Technology Equipment.

IEC/UL 60950-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC/DC converters are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without “conditions of acceptability”. Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information and Safety Certificate for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use should comply with the requirements in IEC/UL 60950-1 Safety of Information Technology Equipment. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/UL 60950-1 with regards to safety.

PKE 3000 and PKE 5000 series DC/DC converters are UL 60950-1 recognized. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, Fire hazard testing, test flames – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters & Power interface modules

The product provide basic or functional insulation between input and output according to IEC/UL 60950-1 (see Safety Certificate), different conditions shall be met if the output of a basic insulated product shall be considered as safety extra low voltage (SELV).

For basic insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/UL 60950-1.
- The input source provides basic insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/UL 60950-1.

For functional insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/UL 60950-1.
- The input source provides basic or supplementary insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/UL 60950-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/UL 60950-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage (V_{iso}) meets the voltage strength requirement for basic insulation according to IEC/UL 60950-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit, the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_P Operating Temperature (see Thermal Consideration section)</td>
<td>-40</td>
<td>+110</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_S Storage temperature</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>V_I Input voltage</td>
<td>18</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_iso Isolation voltage (input to output test voltage)</td>
<td>1500</td>
<td>Vdc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_T Input voltage transient (tp 100ms)</td>
<td></td>
<td></td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_RC Remote Control pin voltage (see Operating Information section)</td>
<td>0</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Positive logic option)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Negative logic option)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_adj Adjust pin voltage (see Operating Information section)</td>
<td>0</td>
<td>V_o</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

[Diagram of the circuit showing primary and secondary sections with labels for input, output, remote control, and adjustment.]
Electrical Specification

PKE 5210 PI

- **T₂ = -40 to +90°C, V₁ = 18 to 75 V, unless otherwise specified under Conditions.**
- **Typical values given at:** T₂ = +25°C, V₁ = 48 V, max I₀, unless otherwise specified under Conditions.
- **Additional Cₜₐₜ = 22μF ceramic capacitor. See Operating Information section for selection of capacitor types.**

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vᵢ</td>
<td>Input voltage range</td>
<td>18</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Vᵢ₉</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Vᵢ₉</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Cᵢ</td>
<td>Internal input capacitance</td>
<td>1.14</td>
<td>μF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₀</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I₀</td>
<td>84.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I₀</td>
<td>87.0</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I₀, V₁ = 24 V</td>
<td>87.8</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I₀, V₁ = 24 V</td>
<td>86.8</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Pₑ</td>
<td>Power Dissipation</td>
<td>max I₀</td>
<td>2.1</td>
<td>5.0</td>
<td>W</td>
</tr>
<tr>
<td>Pᵢ</td>
<td>Input idling power</td>
<td>I₀ = 0 A, V₁ = 48 V</td>
<td>1.028</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Pᵢₐₑ</td>
<td>Input standby power</td>
<td>V₁ = 48 V (turned off with RC)</td>
<td>0.388</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Tₛ</td>
<td>Switching frequency</td>
<td>(0-100) % of max I₀</td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
</tbody>
</table>

Additional Information

- **Vₒᵢ** Output voltage initial setting and accuracy:
 - T₂ = +25°C, V₁ = 48 V, I₀ = 4.5 A
 - 3.26 3.30 3.34 V
- **Vₒ** Output adjust range:
 - See operating information
 - 2.97 3.63 V
- **Vₒₚ** Output voltage tolerance band:
 - 0-100% of max I₀
 - 3.2 3.4 V
- **Iₒ** Idling voltage:
 - I₀ = 0 A
 - 3.2 3.4 V
- **Iₒ** Line regulation:
 - max I₀
 - 2 10 mV
- **Iₒ** Load regulation:
 - V₁ = 48 V, 10-100% of max I₀
 - 10 33 mV
- **Vₒₜ** Load transient voltage deviation:
 - V₁ = 48 V, Load step 25-75-25% of max I₀, di/dt = 1 A/μs
 - ±195 ±700 mV
- **Iᵣₒ** Load transient recovery time:
 - 193 500 μs
- **Iᵣₒ** Ramp-up time:
 - (from 10-90% of Vₒᵢ)
 - 10-100% of max I₀
 - 0.1 0.65 5 ms
- **Iᵣₒ** Start-up time:
 - (from Vᵢ to connection to 90% of Vₒᵢ)
 - 1 6 30 ms
- **Iᵣₒ** Vᵢ shut-down fall time:
 - (from Vᵢ to 10% of Vₒᵢ)
 - max I₀
 - 0.23 ms
 - I₀ = 0A
 - 1.31 s
- **Iᵣₒ** RC start-up time:
 - max I₀
 - 6.0 ms
- **Iᵣₒ** RC shut-down fall time:
 - (from RC to 10% of Vₒᵢ)
 - max I₀
 - 0.1 ms
 - I₀ = 0A
 - 1.52 s
- **Iₒ** Output current:
 - 0 4.5 A
- **Iₒₐₖ** Current limit threshold:
 - V₁ = 48 V, T₂ < max T₂
 - 4.8 8.5 12.2 A
- **Iₒₕ** Short circuit current:
 - T₂ = 25°C, (see Note 1)
 - 4.8 8.5 12.2 A
- **Cₒₑ** Recommended Capacitive Load:
 - T₂ = 25°C, (see Note 2)
 - 0 5000 μF
- **Vₒₑₑ** Output ripple & noise:
 - See ripple & noise section, Vₒᵢ
 - 21 75 mVP-p
- **OVP** Over voltage protection:
 - T₂ = +25°C, V₁ = 48 V, 0-100% of max I₀
 - 3.9 V
- **RC** Sink current, (see Note 3):
 - See operating information
 - 10 mA
- **Tᵣₑ** Trigger level:
 - See operating information
 - 2.5 V

(Notes:
- Note 1: hiccup mode)
- Note 2: Test condition: Electronic Capacitor and 10% - full load)
- Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.)
Typical Characteristics
3.3 V, 4.5 A / 15 W

Efficiency

Efficiency vs. load current and input voltage at \(T_{P1} = +25^\circ C \).

Power Dissipation

Dissipated power vs. load current and input voltage at \(T_{P1} = +25^\circ C \).

Output Characteristics

Output voltage vs. load current at \(T_{P1} = +25^\circ C \).

Current Limit Characteristics

Output voltage vs. load current at \(I_O > max \ I_O, \ T_{P1} = +25^\circ C \).

Output Current Derating

Available load current vs. ambient air temperature and airflow at \(V_I = 48 \) V. See Thermal Consideration section.

Thermal Resistance

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.
Typical Characteristics

PKE 5010 PI

Start-up

- Top trace: output voltage (2 V/div.)
- Bottom trace: input voltage (20 V/div.)
- Time scale: (2 ms/div.)

Start-up enabled by connecting V_i at:

$T_{P1} = +25^\circ C$, $V_i = 48$ V,

$I_o = 4.5$ A electrical load.

Shut-down

- Top trace: output voltage (2 V/div.)
- Bottom trace: input voltage (2 V/div.)
- Time scale: (1 ms/div.)

Shut-down enabled by disconnecting V_i at:

$T_{P1} = +25^\circ C$, $V_i = 48$ V,

$I_o = 4.5$ A electrical load.

Output Ripple & Noise

- Top trace: output voltage (2 V/div.)
- Bottom trace: input voltage (20 V/div.)
- Time scale: (2 µs/div.)

Output voltage ripple at:

$T_{P1} = +25^\circ C$, $V_i = 48$ V,

$I_o = 4.5$ A electrical load.

Output Load Transient Response

- Top trace: output voltage (200 mV/div.)
- Bottom trace: load current (1 A/div.)
- Time scale: (0.5 ms/div.)

Output voltage response to load current step-change (1.125-3.375-1.125 A) at:

$T_{P1} = +25^\circ C$, $V_i = 48$ V.

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

$$R_{ou} = 5.6 \times (1.1406V_{oi} - V_{od})/(V_{od} - V_{oi})(K\Omega);$$

V_{oi} is the desired output voltage and V_{oi} is the initial output voltage.

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

$$R_{od} = 6.3875 \times (1.1585V_{od} - V_{oi})/(V_{oi} - V_{od})(K\Omega);$$

V_{od} is the desired output voltage and V_{oi} is the initial output voltage.
Electrical Specification

5 V, 3 A / 15 W

TP1 = -40 to +90ºC, VI = 18 to 75 V, unless otherwise specified under Conditions.

Typical values given at: TP1 = +25ºC, VI = 48 V, max IO, unless otherwise specified under Conditions.

Additional C_out = 22μF ceramic capacitor. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI</td>
<td>Input voltage range</td>
<td>18</td>
<td>75</td>
<td>V</td>
</tr>
<tr>
<td>Voff</td>
<td>Turn-off input voltage</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Von</td>
<td>Turn-on input voltage</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>1.14</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>PO</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td>W</td>
</tr>
<tr>
<td>ηi</td>
<td>Efficiency</td>
<td>50% of max IO</td>
<td>84.3</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max IO, VI = 24 V</td>
<td>88.3</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>PO</td>
<td>Power Dissipation</td>
<td>max IO</td>
<td>1.9</td>
<td>5.0</td>
</tr>
<tr>
<td>Ps</td>
<td>Input idling power</td>
<td>IO = 0 A, VI = 48 V</td>
<td>1.409</td>
<td></td>
</tr>
<tr>
<td>PRC</td>
<td>Input standby power</td>
<td>VI = 48 V (turned off with RC)</td>
<td>0.388</td>
<td></td>
</tr>
<tr>
<td>Ts</td>
<td>Switching frequency</td>
<td>(0-100) % of max IO</td>
<td>340</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOi</td>
<td>Output voltage initial setting and accuracy</td>
<td>TP1 = +25ºC, VI = 48 V, IO = 3 A</td>
<td>4.94</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>Output adjust range</td>
<td>See operating information</td>
<td>4.50</td>
<td>5.50</td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>0-100% of max IO</td>
<td>4.8</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Idling voltage</td>
<td>IO = 0 A</td>
<td>4.8</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>max IO</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>VI = 48 V, 10-100% of max IO</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Vs</td>
<td>Load transient voltage deviation</td>
<td>VI = 48 V, Load step 25-75-25% of max IO, di/dt = 1 A/µs</td>
<td>±220</td>
<td>±700</td>
</tr>
<tr>
<td>tp</td>
<td>Load transient recovery time</td>
<td></td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>t_r</td>
<td>Ramp-up time</td>
<td>(from 10-90% of VO)</td>
<td>10-100% of max IO</td>
<td>0.1</td>
</tr>
<tr>
<td>t_s</td>
<td>Start-up time</td>
<td>(from VI, connection to 90% of VO)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>t_i</td>
<td>VI shut-down fall time</td>
<td>(from VI, off to 10% of CO)</td>
<td>max IO</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO = 0A</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>t_rc</td>
<td>RC start-up time</td>
<td>max IO</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC shut-down fall time (from RC off to 10% of VC)</td>
<td>max IO</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO = 0A</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>Output current</td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>I_lim</td>
<td>Current limit threshold</td>
<td>VI = 48 V, TP1 < max TP1</td>
<td>3.3</td>
<td>6.0</td>
</tr>
<tr>
<td>I_sc</td>
<td>Short circuit current</td>
<td>TP1 = 25ºC, (see Note 1)</td>
<td>3.3</td>
<td>6.0</td>
</tr>
<tr>
<td>C_out</td>
<td>Recommended Capacitive Load</td>
<td>TP1 = 25ºC, (see Note 2)</td>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>V_osc</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, VOi</td>
<td>14</td>
<td>75</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td>TP1 = +25ºC, VI = 48 V, 0-100% of max IO</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Sink current, (see Note 3)</td>
<td>See operating information</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

(Note 1: hiccup mode)
(Note 2: Test condition: Electronic Capacitor and 10% load = full load)
(Note 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.)
Typical Characteristics

5 V, 3 A / 15 W

Efficiency

Efficiency vs. load current and input voltage at \(T_{P1} = +25^\circ C \).

Output Characteristics

Output voltage vs. load current at \(T_{P1} = +25^\circ C \).

Output Current Derating

Available load current vs. ambient air temperature and airflow at \(V_I = 48 \text{ V} \). See Thermal Consideration section.

Power Dissipation

Dissipated power vs. load current and input voltage at \(T_{P1} = +25^\circ C \).

Current Limit Characteristics

Output voltage vs. load current at \(I_O > \text{max } I_O \), \(T_{P1} = +25^\circ C \).

Thermal Resistance

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.

Available load current vs. ambient air temperature and airflow at \(V_I = 48 \text{ V} \). See Thermal Consideration section.
Typical Characteristics

5 V, 3 A / 15 W

Start-up

Start-up enabled by connecting \(V_I \) at:

\[T_P = +25^\circ C, \ V_I = 48 \ V, \ I_O = 3 \ A \text{ electrical load}. \]

Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: (2 ms/div.).

Output Ripple & Noise

Output voltage ripple at:

\[T_P = +25^\circ C, \ V_I = 48 \ V, \ I_O = 3 \ A \text{ electrical load}. \]

Trace: output voltage (20 mV/div.).
Time scale: (2 \mu s/div.).

Output Load Transient Response

Output voltage response to load current step-change (0.75-2.25-0.75 A) at:

\[T_P = +25^\circ C, \ V_I = 48 \ V. \]

Top trace: output voltage (200 mV/div.).
Bottom trace: load current (1 A/div.).
Time scale: (0.5 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

\[R_{ou} = 3.3 \times (1.1515V_{oi} — V_{od})/(V_{od} — V_{oi})(\text{KOhm}) ; \]

\(V_{oi} \) is the desired output voltage and \(V_{oi} \) is the initial output voltage.

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

\[R_{od} = 3.8 \times (1.1316V_{od} — V_{oi})(V_{oi} — V_{od})(\text{KOhm}) ; \]

\(V_{od} \) is the desired output voltage and \(V_{oi} \) is the initial output voltage.
Electrical Specification

12 V, 1.25 A / 15 W

T_{P1} = -40 to +90°C, V_i = 18 to 75 V, unless otherwise specified under Conditions.

Typical values given at: T_{P1} = +25°C, V_i = 48 V, max I_o, unless otherwise specified under Conditions.

Additional C_{out} = 22µF ceramic capacitor. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>18</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>1.14</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_o</td>
<td>86.3</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o</td>
<td>88.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I_o, V_i = 24 V</td>
<td>87.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_o, V_i = 24 V</td>
<td>89.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_d</td>
<td>Power Dissipation</td>
<td>max I_o</td>
<td>1.9</td>
<td>5.0</td>
<td>W</td>
</tr>
<tr>
<td>P_{id}</td>
<td>Input idling power</td>
<td>I_o = 0 A, V_i = 48 V</td>
<td>0.760</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_{RC}</td>
<td>Input standby power</td>
<td>V_i = 48 V (turned off with RC)</td>
<td>0.388</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>t_s</td>
<td>Switching frequency</td>
<td>(0-100) % of max I_o</td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
</tbody>
</table>

V_{CI}	Output voltage initial setting and accuracy	T_{P1} = +25°C, V_i = 48 V, I_o = 1.25 A	11.85	12.00	12.15	V
V_o	Output adjust range	See operating information	10.8	13.2	V	
	Output voltage tolerance band	0-100% of max I_o	11.52	12.48	V	
I_d	Idling voltage	I_o = 0 A	11.52	12.48	V	
Line regulation	max I_o	2	24	mV		
Load regulation	V_i = 48 V, 10-100% of max I_o	5	120	mV		
V_{L}	Load transient voltage deviation	V_i = 48 V, Load step 25-75-25% of max I_o, dl/dt = 1 A/µs	±250	±700	mV	
t_{L}	Load transient recovery time	200	500	µs		
t_r	Ramp-up time (from 10-90% of V_o)	10-100% of max I_o	0.1	0.91	5	ms
t_s	Start-up time (from V_i connection to 90% of V_o)	1	5	30	ms	
I_i	V_i shut-down fall time (from V_i, off to 10% of V_o)	max I_o	0.61	ms		
		I_o = 0A	0.25	s		
I_{RC}	RC start-up time	max I_o	7.0	ms		
	RC shut-down fall time (from RC off to 9% of V_o)	max I_o	0.41	ms		
		I_o = 0A	0.20	s		
I_o	Output current	0	1.25	A		
I_{Lim}	Current limit threshold	V_i = 48 V, T_{P1} < max T_{P1}	1.3	2.5	3.7	A
I_sc	Short circuit current	T_{P1} = 25°C, (see Note 1)	1.3	2.5	3.7	A
C_{out}	Recommended Capacitive Load	T_{P1} = 25°C, (see Note 2)	0	470	µF	
V_{Dec}	Output ripple & noise	See ripple & noise section, V_o	13	75	mVp-p	
OVP	Over voltage protection	T_{P1} = +25°C, V_i = 48 V, 0-100% of max I_o	15	V		
RC	Sink current, (see Note 3)	See operating information	10	mA		

(Note 1: hiccup mode)
(Notes 2: Test condition: Electronic Capacitor and 10% load – full load)
(Notes 3: Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.)
Typical Characteristics

12 V, 1.25 A / 15 W

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{PI} = +25°C$.

Power Dissipation

![Power Dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{PI} = +25°C$.

Output Characteristics

![Output Voltage graph](image)

Output voltage vs. load current at $T_{PI} = +25°C$.

Current Limit Characteristics

![Current Limit graph](image)

Output voltage vs. load current at $I_o > max I_o , T_{PI} = +25°C$.

Output Current Derating

![Current Derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_I = 48$ V. See Thermal Consideration section.

Thermal Resistance

![Thermal Resistance graph](image)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.
Typical Characteristics
12 V, 1.25 A / 15 W

Start-up

Start-up enabled by connecting \(V_1 \) at:
\[\begin{align*}
T_{P1} &= +25^\circ \text{C}, \ V_1 = 48 \text{ V}, \\
I_0 &= 1.25 \text{ A electrical load}.
\end{align*} \]

Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: (2 ms/div.).

Shut-down

Shut-down enabled by disconnecting \(V_1 \) at:
\[\begin{align*}
T_{P1} &= +25^\circ \text{C}, \ V_1 = 48 \text{ V}, \\
I_0 &= 1.25 \text{ A electrical load}.
\end{align*} \]

Top trace: output voltage (5 V/div.).
Bottom trace: input voltage (20 V/div.).
Time scale: (1 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
\[\begin{align*}
T_{P1} &= +25^\circ \text{C}, \ V_1 = 48 \text{ V}, \\
I_0 &= 1.25 \text{ A electrical load}.
\end{align*} \]
Trace: output voltage (20 mV/div.).
Time scale: (2 \(\mu \text{S} \)/div.).

Output Load Transient Response

Output voltage response to load current step-change (0.312/0.937/0.312 A) at:
\[\begin{align*}
T_{P1} &= +25^\circ \text{C}, \ V_1 = 48 \text{ V},
\end{align*} \]
Top trace: output voltage (200 mV/div.).
Bottom trace: load current (0.5 A/div.).
Time scale: (0.5 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

\[R_{ou} = 22 \times \frac{(1.1633V_o - V_i)(V_o - V_d)}{(V_i - V_o)}, (\text{KOhm}) \]

Vod is the desired output voltage and Voi is the initial output voltage.

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

\[R_{od} = 25.5924 \times \frac{(1.1390V_o - V_i)(V_i - V_o)}{(V_o - V_d)}, (\text{KOhm}) \]

Vod is the desired output voltage and Voi is the initial output voltage.
Electrical Specification

PKE 5215 PI

15 V, 1 A / 15 W

$T_{P1} = -40$ to $+90 \degree C$, $V_I = 18$ to 75 V, unless otherwise specified under Conditions.

Typical values given at: $T_{P1} = +25 \degree C$, $V_I = 48 V$, max I_O, unless otherwise specified under Conditions.

Additional $C_{out} = 22 \mu F$ ceramic capacitor. See Operating Information section for selection of capacitor types.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_I</td>
<td>Input voltage range</td>
<td>18</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>C_I</td>
<td>Internal input capacitance</td>
<td>1.14</td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>P_O</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_O</td>
<td>84.4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>$\max I_O$</td>
<td>max I_O</td>
<td>88.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% of max I_O, $V_I = 24$ V</td>
<td>86.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\max I_O$, $V_I = 24$ V</td>
<td>89.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_E</td>
<td>Power Dissipation</td>
<td>max I_O</td>
<td>2.0</td>
<td>5.0</td>
<td>W</td>
</tr>
<tr>
<td>P_s</td>
<td>Input idling power</td>
<td>$I_O = 0$ A, $V_I = 48$ V</td>
<td>0.460</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P_{RC}</td>
<td>Input standby power</td>
<td>$V_I = 48$ V (turned off with RC)</td>
<td>0.390</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>(0-100%) of max I_O</td>
<td>340</td>
<td>400</td>
<td>460</td>
</tr>
<tr>
<td>V_{Cl}</td>
<td>Output voltage initial setting and accuracy</td>
<td>$T_{P1} = +25 \degree C$, $V_I = 48$ V, $I_O = 1$ A</td>
<td>14.82</td>
<td>15.00</td>
<td>15.18</td>
</tr>
<tr>
<td>V_O</td>
<td>Output adjust range</td>
<td>See operating information</td>
<td>13.50</td>
<td>16.50</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>0-100% of max I_O</td>
<td>14.4</td>
<td>15.6</td>
<td>V</td>
</tr>
<tr>
<td>I_D</td>
<td>Idling voltage</td>
<td>$I_O = 0$ A</td>
<td>14.4</td>
<td>15.6</td>
<td>V</td>
</tr>
<tr>
<td>L_{line}</td>
<td>Line regulation</td>
<td>max I_O</td>
<td>2</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td>L_{load}</td>
<td>Load regulation</td>
<td>$V_I = 48$ V, 10-100% of max I_O</td>
<td>4</td>
<td>150</td>
<td>mV</td>
</tr>
<tr>
<td>V_{tr}</td>
<td>Load transient voltage deviation</td>
<td>$V_I = 48$ V, Load step 25-75-25% of max I_O, $\frac{\text{di}}{\text{dt}} = 1$ A/μs</td>
<td>±200</td>
<td>±700</td>
<td>mV</td>
</tr>
<tr>
<td>t_{tr}</td>
<td>Load transient recovery time</td>
<td>250</td>
<td>500</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>t_{r}</td>
<td>Ramp-up time</td>
<td>1-100% of max I_O</td>
<td>0.1</td>
<td>0.85</td>
<td>5</td>
</tr>
<tr>
<td>t_{st}</td>
<td>Start-up time</td>
<td>(from V_I connection to 90% of V_O)</td>
<td>1</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>t_f</td>
<td>Vt shut-down fall time</td>
<td>(from V_I off to 10% of V_O)</td>
<td>max I_O</td>
<td>0.88</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>$I_O = 0$ A</td>
<td>0.57</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{RC}</td>
<td>RC start-up time</td>
<td>(from RC off to 10% of V_O)</td>
<td>max I_O</td>
<td>7.1</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>$I_O = 0$ A</td>
<td>0.61</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.63</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_O</td>
<td>Output current</td>
<td>0</td>
<td>1.0</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_{lim}</td>
<td>Current limit threshold</td>
<td>$V_I = 48$ V, $T_{P1} < \max T_{P1}$</td>
<td>1.1</td>
<td>2.0</td>
<td>2.9</td>
</tr>
<tr>
<td>I_{sc}</td>
<td>Short circuit current</td>
<td>$T_{P1} = 25 \degree C$, (see Note 1)</td>
<td>1.1</td>
<td>2.0</td>
<td>2.9</td>
</tr>
<tr>
<td>C_{out}</td>
<td>Recommended Capacitive Load</td>
<td>$T_{P1} = 25 \degree C$, (see Note 2)</td>
<td>0</td>
<td>470</td>
<td>μF</td>
</tr>
<tr>
<td>V_{OAC}</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, V_O</td>
<td>14</td>
<td>75</td>
<td>mVp-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td>$T_{P1} = +25 \degree C$, $V_I = 48$ V, 0-100% of max I_O</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>RC</td>
<td>Sink current, (see Note 3)</td>
<td>See operating information</td>
<td>10</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Trigger level</td>
<td>See operating information</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

(Notes:
1. hiccup mode
2. Test condition: Electronic Capacitor and 10% load ~ full load
3. Sink current drawn by external device connected to the RC pin. Minimum sink current required to guarantee activated RC function.)
Typical Characteristics

15 V, 1 A / 15 W

Efficiency

Efficiency vs. load current and input voltage at \(T_{Pi} = +25^\circ C \).

Power Dissipation

Dissipated power vs. load current and input voltage at \(T_{Pi} = +25^\circ C \).

Output Characteristics

Output voltage vs. load current at \(T_{Pi} = +25^\circ C \).

Current Limit Characteristics

Output voltage vs. load current at \(I_o > \max I_o \), \(T_{Pi} = +25^\circ C \).

Output Current Derating

Available load current vs. ambient air temperature and airflow at \(V_i = 48 \) V. See Thermal Consideration section.

Thermal Resistance

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section.
Typical Characteristics

PKE 5000 series Direct Converters

Input 18 - 75 V, Output up to 4.5 A / 15 W

Start-up

Start-up enabled by connecting V_I at:

$T_{Pi} = +25^\circ C, V_I = 48 \text{ V}, I_O = 1 \text{ A electrical load.}$

Top trace: output voltage (5 V/div.).

Bottom trace: input voltage (20 V/div.).

Time scale: (2 ms/div.).

Shut-down

Shut-down enabled by disconnecting V_I at:

$T_{Pi} = +25^\circ C, V_I = 48 \text{ V}, I_O = 1 \text{ A electrical load.}$

Top trace: output voltage (5 V/div.).

Bottom trace: input voltage (20 V/div.).

Time scale: (1 ms/div.).

Output Ripple & Noise

Output voltage ripple at:

$T_{Pi} = +25^\circ C, V_I = 48 \text{ V}, I_O = 1 \text{ A electrical load.}$

Trace: output voltage (20 mV/div.).

Time scale: (2 µs/div.).

Output Load Transient Response

Output voltage response to load current step-change (0.25-0.75-0.25 A) at:

$T_{Pi} = +25^\circ C, V_I = 48 \text{ V}$.

Top trace: output voltage (200 mV/div.).

Bottom trace: load current (0.5 A/div.).

Time scale: (0.5 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

To adjust the output voltage upwards, a resistor is connected between pins 5 and 6. The output voltage increases when the resistance decreases. The resistance value is given by the equation:

$$R_{ou} = 30 \times (1.1499V_{od} - V_{oi})/(V_{od} - V_{oi}) \text{ (KOhm)}; V_{od} \text{ is the desired output voltage and } V_{oi} \text{ is the initial output voltage.}$$

To adjust the output voltage downwards, a resistor is connected between pins 4 and 5. The output voltage decreases when the resistance decreases. The resistance value is given by the equation:

$$R_{od} = 34.497 \times (1.1331V_{od} - V_{oi})/(V_{od} - V_{oi}) \text{ (KOhm)}; V_{od} \text{ is the desired output voltage and } V_{oi} \text{ is the initial output voltage.}$$
EMC Specification
Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 029 for further information. The fundamental switching frequency is 400 kHz for PKE 5211 PI at \(V_i \) = 48 V and max \(I_o \).

Conducted EMI Input terminal value (typ)

![EMI graph](image)

EMI without filter

Optional external filter for class B
Suggested external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

Filter components:
- \(C_{1,3} = 1 \, \mu F \)
- \(C_{2,4} = 47 \, \mu F \)
- \(C_5 = 1 \, \mu F \)
- \(CY_{1,2,3,4,5,6} = 1nF \)
- \(L_1 = 1500 \, \mu H \)

![Filter diagram](image)

Output ripple and noise
Output ripple and noise measured according to figure below.

![Output ripple and noise test setup](image)

Layout recommendations
The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.
Operating information

Input Voltage
The input voltage range is 18 to 75 Vdc. At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and T_p must be limited to absolute max $+110^\circ$C. The absolute maximum continuous input voltage is 75 Vdc.

Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependent on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like zener diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 examines the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect.

Turn-off Input Voltage
The products monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is about 1 V.

Remote Control (RC)

The products are fitted with a remote control function referenced to the primary negative input connection -In, with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor to +In.

The external device must provide a minimum required sink current to guarantee a voltage not higher than maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 3 – 6 V.

The standard product is provided with "negative logic" (Active Low) remote control. When the RC pin is left open, or connected to a voltage higher than 2V referenced to -In, the product will be off when the input voltage is applied. To turn on the product the RC pin should be connected to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin must be wired directly to -In.

The second option is "positive logic" (Active High) remote control, which can be ordered by adding the suffix “P” to the end of the part number. In this case, when the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the -In. The product will restart automatically when this connection is opened.

See Design Note 021 for detailed information.

Input and Output Impedance
The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The products are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

If the input voltage source contains significant inductance, the addition of a 22 - 100 µF capacitor across the input of the product will ensure stable operation. The capacitor is not required when powering the product from an input source with an inductance below 10 µH. The minimum required capacitance value depends on the output power and the input voltage. The higher output power the higher input capacitance is needed. Approximately doubled capacitance value is required for a 24 V input voltage source compared to a 48 V input voltage source.

External Decoupling Capacitors
When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PWB layouts and cabling.

External decoupling capacitors will become part of the product’s control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical specification.

The ESR of the capacitors is a very important parameter. Stable operation is guaranteed with a verified ESR value of >5 mΩ across the output connections.

For further information please contact your local Flex representative.
Output Voltage Adjust (V_adj)
The products have an Output Voltage Adjust pin (V_adj). This pin can be used to adjust the output voltage above or below output voltage initial setting. When increasing the output voltage, the voltage at the output pins must be kept below the threshold of the over voltage protection, (OVP) to prevent the product from shutting down. At increased output voltages the maximum power rating of the product remains the same, and the max output current must be decreased correspondingly. To increase the voltage the resistor should be connected between the V_adj pin and -Out pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product. To decrease the output voltage, the resistor should be connected between the V_adj pin and +Out pin.

Over Current Protection (OCP)
The products include current limiting circuitry for protection at continuous overload. The output voltage will decrease towards zero for output currents in excess of max output current (max I_o). The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output short circuit current specified.

Over Temperature Protection (OTP)
The products are protected from thermal overload by an internal over temperature shutdown circuit. When T_P1 as defined in thermal consideration section exceeds 115°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >5°C below the temperature threshold.

Over Voltage Protection (OVP)
The converters have output over voltage protection that will prevent output voltage to exceed the specified value in technical specification. The converter will limit the output voltage to the maximum level. Converters will resume normal operation automatically after removal of the over voltage condition.
Thermal Consideration

General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PWB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each mode provides the available output current vs. ambient air temperature and air velocity at \(V_I = 48 \text{ V} \).

The product is tested on a 107 x 45 mm, 70 µm (2 oz), 1-layer test board in a wind box with 370 x 220 mm.

For products with base plate used in a sealed box application, Cooling is achieved mainly by airflowing. The Output Current Derating graphs are found in the Output section for each model. The product is tested in a sealed box test set up with ambient temperatures 25°C.

Definition of product operating temperature
The product operating temperatures is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1. The temperature at this position \(T_{P1} \) should not exceed the maximum temperatures in the table below. Temperature above maximum \(T_{P1} \), measured at the reference point P1 are not allowed and may cause permanent damage.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P1)</td>
<td>(Reference point)</td>
<td>(T_{P1}=110^\circ \text{ C})</td>
</tr>
</tbody>
</table>
PKE 5000 series Direct Converters
Input 18 - 75 V, Output up to 4.5 A / 15 W

Connections

![Top view diagram]

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>On/Off Control</td>
<td>Remote control</td>
</tr>
<tr>
<td>2</td>
<td>-Input</td>
<td>Negative input</td>
</tr>
<tr>
<td>3</td>
<td>+Input</td>
<td>Positive input</td>
</tr>
<tr>
<td>4</td>
<td>+Out</td>
<td>Positive output</td>
</tr>
<tr>
<td>5</td>
<td>TRIM</td>
<td>Output voltage adjust</td>
</tr>
<tr>
<td>6</td>
<td>-Out</td>
<td>Negative output</td>
</tr>
</tbody>
</table>
Mechanical Information

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.
Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.

A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic clamshell trays

<table>
<thead>
<tr>
<th>Tray Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surface resistance</td>
</tr>
<tr>
<td>Bakability</td>
</tr>
<tr>
<td>Tray thickness</td>
</tr>
<tr>
<td>Box capacity</td>
</tr>
<tr>
<td>Tray weight</td>
</tr>
</tbody>
</table>
PKE 5000 series Direct Converters

Input 18 - 75 V, Output up to 4.5 A / 15 W

Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>External visual inspection</td>
<td>IPC-E-610</td>
</tr>
<tr>
<td>Change of temperature (Temperature cycling)</td>
<td>IEC 60068-2-14 Na</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-55 to 105°C</td>
</tr>
<tr>
<td>Number of cycles</td>
<td>20</td>
</tr>
<tr>
<td>Dwell/transfer time</td>
<td>30 min/3 min</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 60068-2-1</td>
</tr>
<tr>
<td>Temperature T_A</td>
<td>-45°C</td>
</tr>
<tr>
<td>Duration</td>
<td>72 h</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-30</td>
</tr>
<tr>
<td>Temperature</td>
<td>45°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>95 % RH</td>
</tr>
<tr>
<td>Duration</td>
<td>72 hours</td>
</tr>
<tr>
<td>Electrostatic discharge susceptibility</td>
<td>IEC 61340-3-1, JESD 22-A114</td>
</tr>
<tr>
<td>Human body model (HBM)</td>
<td>Class 2, 2000 V</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>IEC 60068-2-27 Ea</td>
</tr>
<tr>
<td>Peak acceleration</td>
<td>200 g</td>
</tr>
<tr>
<td>Duration</td>
<td>6 ms</td>
</tr>
<tr>
<td>Operational life test</td>
<td>MIL-STD-202G, method 108A</td>
</tr>
<tr>
<td>Duration</td>
<td>1000 h</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td>IEC 60068-2-20 Tb, method 1A</td>
</tr>
<tr>
<td>Solder temperature</td>
<td>270°C</td>
</tr>
<tr>
<td>Duration</td>
<td>10-13 s</td>
</tr>
<tr>
<td>Robustness of terminations</td>
<td>IEC 60068-2-21 Test Ua1</td>
</tr>
<tr>
<td>Through hole mount products</td>
<td>All leads</td>
</tr>
<tr>
<td>Solderability</td>
<td>IEC 60068-2-20 test Ta</td>
</tr>
<tr>
<td>Temperature, SnPb Eutectic</td>
<td>235°C</td>
</tr>
<tr>
<td>Temperature, Pb-free</td>
<td>245°C</td>
</tr>
<tr>
<td>Vibration, broad band random</td>
<td>IEC 60068-2-64 Fh, method 1</td>
</tr>
<tr>
<td>Frequency</td>
<td>10 to 500 Hz</td>
</tr>
<tr>
<td>Spectral density</td>
<td>0.07 g^2/Hz</td>
</tr>
<tr>
<td>Duration</td>
<td>10 min in each direction</td>
</tr>
</tbody>
</table>