PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Key Features
- Industry standard Sixteenth-brick
 33.02 x 22.86 x 9.6 mm (1.30 x 0.90 x 0.38 in)
- High efficiency, typ. 90.6 % at 12 Vout half load
- 2250 Vdc input to output isolation
- Pre-bias start up
- Adjustable output voltage
- Support two modules operation in parallel
- Open frame intended for conducted cooling (cold wall)
- Meets safety requirements according to IEC/EN/UL 60950-1
- MTBF 5.2 Mh

General Characteristics
- Input under voltage shutdown
- Monotonic start-up
- Remote control
- Output over voltage protection
- Over temperature protection
- Output short-circuit protection
- Highly automated manufacturing ensures quality
- ISO 9001/14001 certified supplier

Contents
Ordering Information ... 2
General Information ... 2
Safety Specification ... 3
Absolute Maximum Ratings ... 4
Electrical Specification ... 5
PKU 4813C PI ... 5
12 V, 7 A / 84 W
PKU 4815C PI ... 9
15 V, 5.7 A / 86 W
EMC Specification ... 13
Operating Information ... 14
Thermal Consideration .. 16
Connections ... 17
Mechanical Information ... 18
Soldering Information ... 21
Delivery Information ... 22
Product Qualification Specification ... 23
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Technical Specification
28701-BMR67103 Rev D November 2017
© Flex

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKU 4813 C</td>
<td>12 V, 7.0 A / 84 W</td>
</tr>
<tr>
<td>PKU 4815 C</td>
<td>15 V, 5.7 A / 86 W</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>Surface mount</td>
</tr>
<tr>
<td></td>
<td>Through hole</td>
</tr>
<tr>
<td>n2</td>
<td>Negative *</td>
</tr>
<tr>
<td>n3</td>
<td>Positive</td>
</tr>
<tr>
<td>n4</td>
<td>5.30 mm *</td>
</tr>
<tr>
<td></td>
<td>3.69 mm (pin-cut)</td>
</tr>
<tr>
<td></td>
<td>4.57 mm (pin-cut)</td>
</tr>
<tr>
<td></td>
<td>2.79 mm (pin-cut)</td>
</tr>
<tr>
<td>n5</td>
<td>/B</td>
</tr>
<tr>
<td></td>
<td>/C</td>
</tr>
</tbody>
</table>

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex Power Modules General Terms and Conditions of Sale.

Limitation of Liability

Flex Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2017

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBBE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex Power Modules products are found in the Statement of Compliance document.

Flex Power Modules fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Reliability

The failure rate (λ) and mean time between failures (MTBF = $1/\lambda$) is calculated at max output power and an operating ambient temperature (TA) of +40°C. Flex Power Modules uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure rate, λ</th>
<th>Std. deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>193 nFailures/h</td>
<td>27 nFailures/h</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKU 4000C series = 5.18 Mh. MTBF at 90% confidence level = 4.38 Mh
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Safety Specification

General information
Flex Power Modules DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL60950, Safety of Information Technology Equipment.

IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC-DC converters and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without “Conditions of Acceptability”. Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable Safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product.

Component power supplies for general use should comply with the requirements in IEC/EN/UL 60950-1 Safety of Information Technology Equipment. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/EN/UL 60950-1 with regards to safety.

Flex Power Modules DC/DC converters, Power interface modules and DC/DC regulators are UL 60950-1 recognized and certified in accordance with EN 60950-1. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 6095-11-10, Fire hazard testing, test flames – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters
The product may provide basic or functional insulation between input and output according to IEC/EN/UL 60950-1 (see Safety Certificate), different conditions shall be met if the output of a basic or a functional insulated product shall be considered as safety extra low voltage (SELV).

For basic insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides functional or basic insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 60950-1.

For functional insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides basic or supplementary insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 60950-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/EN/UL 60950-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage (Viso) meets the voltage strength requirement for basic insulation according to IEC/EN/UL 60950-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_F1 Operating Temperature (see Thermal Consideration section)</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_S Storage temperature</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>V_i Input voltage</td>
<td>-0.5</td>
<td>+80</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_i External input capacitance</td>
<td>47</td>
<td></td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>V_iso Isolation voltage (input to output test voltage)</td>
<td></td>
<td>2250</td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>V_tr Input voltage transient according to ETSI EN 300 132-2 and Telcordia GR-1089-CORE</td>
<td></td>
<td>100</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_RC Remote Control pin voltage (see Operating Information section)</td>
<td></td>
<td>Positive logic option</td>
<td>-0.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative logic option</td>
<td>-0.5</td>
<td>6</td>
</tr>
<tr>
<td>V_adj Adjust pin voltage (see Operating Information section)</td>
<td></td>
<td>-0.5</td>
<td>5</td>
<td>V</td>
</tr>
</tbody>
</table>

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the Electrical Specification section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fundamental Circuit Diagram
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Technical Specification

PKU4813C

Electrical Specification
12 V, 7.0 A / 84 W

T_{PT} = -40 to +95°C, V_{i} = 36 to 75 V, unless otherwise specified under Conditions.

Typical values given at: T_{PT} = +25°C, V_{i} = 53 V, max I_{O}, unless otherwise specified under Conditions.

Additional C_{i} = 47 µF, C_{o} = 100uF. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{PT}</td>
<td></td>
<td>11.7</td>
<td>12</td>
<td>12.3</td>
<td>V</td>
</tr>
<tr>
<td>Output voltage initial setting and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load transient voltage deviation</td>
<td></td>
<td>600</td>
<td>1000</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Load transient recovery time</td>
<td></td>
<td>1</td>
<td>1.6</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Ramp-up time</td>
<td></td>
<td>10</td>
<td>13</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Start-up time</td>
<td></td>
<td>13</td>
<td>16</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>RC start-up time</td>
<td></td>
<td>125</td>
<td>160</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Sinking</td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current limit</td>
<td></td>
<td>1.39</td>
<td>1.44</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Short circuit current</td>
<td></td>
<td>0.07</td>
<td>7.0</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Recommended Capacitive Load</td>
<td></td>
<td>7.5</td>
<td>11</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Output ripple & noise</td>
<td></td>
<td>500</td>
<td>600</td>
<td></td>
<td>mVp-p</td>
</tr>
<tr>
<td>Over voltage protection</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Sinking current drawn by external device connected to the RC pin.
Note 2: Minimum 0.9W load is required to guaranty line and load regulation
Note 3: Low ESR value
Typical Characteristics

12 V, 7.0 A / 84 W

Efficiency

- Efficiency vs. load current and input voltage at $T_{\text{in}} = +25^\circ \text{C}$.

Power Dissipation

- Dissipated power vs. load current and input voltage at $T_{\text{in}} = +25^\circ \text{C}$.

Output Characteristics

- Output voltage vs. load current at $T_{\text{in}} = +25^\circ \text{C}$.

Current Limit Characteristics

- Output voltage vs. load current at $I_o > I_{\text{max}}, T_{\text{in}} = +25^\circ \text{C}$.

Output Characteristics at light load

- Output voltage vs. load current at $T_{\text{in}} = +25^\circ \text{C}$.
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Typical Characteristics
12 V, 7.0 A / 84 W

Start-up

![Start-up diagram]

Start-up enabled by connecting V1 at:
\[T_{P1} = +25^\circ C, V_1 = 53 \text{ V}, \]
\[I_0 = 7.0 \text{ A resistive load.} \]

Top trace: Output voltage (5 V/div.),
Bottom trace: Input voltage (50 V/div.),
Time scale: (10 ms/div.).

Output Ripple & Noise

![Output Ripple & Noise diagram]

Output voltage ripple at:
\[T_{P1} = +25^\circ C, V_1 = 53 \text{ V}, \]
\[I_0 = 7.0 \text{ A resistive load.} \]

Trace: output voltage (5 mV/div.),
Time scale: (2 µs/div.),
20 MHz bandwidth filter 10 µF+0.1 µF

Output Load Transient Response

![Output Load Transient Response diagram]

Output voltage response to load current step-change (1.75 – 5.25 – 1.75 A) at:
\[C_0 = 1.5\text{mF}, \]
\[T_{P1} = +25^\circ C, V_1 = 53 \text{ V}. \]

Top trace: Output voltage (0.5 V/div.),
Bottom trace: Load current (5 A/div.),
Time scale: (1 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust
The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:
\[R_{adj} = 5.11 \times \left(\frac{12(100 + \Delta\%) - (100 + 2 \times \Delta\%)}{1.225 \times \Delta\%} \right) \Omega \]

Example: Increase 4% \[\Rightarrow V_{out} = 12.48 \text{ Vdc} \]
\[5.11 \times \left(\frac{12(100 + 4)}{1.225 \times 4} \right) \Omega = 1164 \Omega \]

Output Voltage Adjust Downwards, Decrease:
\[R_{adj} = 5.11 \times \left(\frac{100}{\Delta\%} - 2 \right) \Omega \]

Example: Decrease 2% \[\Rightarrow V_{out} = 11.76 \text{ Vdc} \]
\[5.11 \times \left(\frac{100}{2} - 2 \right) \Omega = 245 \Omega \]
Typical Characteristics

12 V, 7.0 A / 84 W

Output Current Derating – Open frame

Available load current vs. ambient air temperature and airflow at $V_i = 53$ V. See Thermal Consideration section.

Output Current Derating – Cold wall sealed box

Available load current vs. cold wall temperature. $V_i = 53$ V. See Thermal Consideration section.
PKU 4800C Series DC-DC Converters

Electrical Specification

15 V, 5.7 A / 86 W

T_{P1} = -40 to +95°C, V_i = 36 to 75 V, unless otherwise specified under Conditions.

Typical values given at: T_{P1} = +25°C, V_i = 53 V, max I_o, unless otherwise specified under Conditions.

Additional C_{in} = 47 µF, C_{out} = 100µF. See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>i</sub> Input voltage range</td>
<td></td>
<td>36</td>
<td>75</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V<sub>off</sub> Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>on</sub> Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>C<sub>i</sub> Internal input capacitance</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>P<sub,o</sub> Output power</td>
<td></td>
<td>0.9</td>
<td>86</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η Efficiency</td>
<td>50% of max I<sub>o</sub></td>
<td></td>
<td>90.3</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>max I<sub>o</sub></td>
<td></td>
<td>91.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% of max I<sub>o</sub>, V<sub>i</sub> = 48 V</td>
<td></td>
<td>90.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max I<sub>o</sub>, V<sub>i</sub> = 48 V</td>
<td></td>
<td>91.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P<sub>d</sub> Power Dissipation</td>
<td>max I<sub>o</sub></td>
<td>7.8</td>
<td>9.3</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P<sub>i</sub> Input idling power</td>
<td>I<sub>i</sub> = 0 A, V<sub>i</sub> = 53 V</td>
<td>1.7</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>P<sub>SC</sub> Input standby power</td>
<td>V<sub>i</sub> = 53 V (turned off with RC)</td>
<td>0.28</td>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>f<sub>s</sub> Switching frequency</td>
<td>0-100% of max I<sub>o</sub></td>
<td>370</td>
<td>415</td>
<td>460</td>
<td>kHz</td>
</tr>
<tr>
<td>V<sub>i</sub>, V<sub>o</sub> Output voltage initial setting and accuracy</td>
<td>T<sub>P1</sub> = +25°C, V<sub>i</sub> = 53 V, I<sub>o</sub> = 5.7 A</td>
<td>14.6</td>
<td>15</td>
<td>15.4</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>o</sub> Output adjust range</td>
<td>See operating information</td>
<td>12</td>
<td>16.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V<sub>o</sub> Output voltage tolerance band</td>
<td>1-100% of max I<sub>o</sub></td>
<td>14.55</td>
<td>15.45</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I<sub>o</sub> Idling voltage</td>
<td>I<sub>o</sub> = 0 A</td>
<td>14.6</td>
<td>20</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Line regulation</td>
<td>max I<sub>o</sub></td>
<td>5</td>
<td>15</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Load regulation</td>
<td>V<sub>i</sub> = 53 V, 1-100% of max I<sub>o</sub></td>
<td>10</td>
<td>30</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>V<sub>tr</sub> Load transient voltage deviation</td>
<td>V<sub>i</sub> = 53 V, Load step 25-75-25% of max I<sub>o</sub>, di/dt = 1 A/µs, C<sub>o</sub> = 0.8 mF</td>
<td>600</td>
<td>1000</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>I<sub>tr</sub> Load transient recovery time</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>f<sub>r</sub> Ramp-up time (from 10-90% of V<sub>o</sub>)</td>
<td></td>
<td>9</td>
<td>15</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>I<sub>st</sub> Start-up time (from V<sub>i</sub> connection to 90% of V<sub>o</sub>)</td>
<td>10-100% of max I<sub>o</sub></td>
<td>13</td>
<td>16</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>I<sub>VRC</sub> RC start-up time (from V<sub>RC</sub> connection to 90% of V<sub>o</sub>)</td>
<td>max I<sub>o</sub></td>
<td>115</td>
<td>160</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>RC Sink current</td>
<td>See operating information, Note 1</td>
<td>0.25</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I<sub>o</sub> Output current</td>
<td>See note 2</td>
<td>0.06</td>
<td>5.7</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>I<sub>lim</sub> Current limit threshold</td>
<td>T<sub>P1</sub> < max T<sub>P1</sub></td>
<td>5.7</td>
<td>8.4</td>
<td>11</td>
<td>A</td>
</tr>
<tr>
<td>I<sub>scc</sub> Short circuit current</td>
<td>T<sub>P1</sub> = +25°C, hic-up mode</td>
<td>4.5</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C<sub>out</sub> Recommended Capacitive Load</td>
<td>T<sub>P1</sub> = +25°C, see Note 3</td>
<td>100</td>
<td>1500</td>
<td></td>
<td>µF</td>
</tr>
<tr>
<td>V<sub>oc</sub> Output ripple & noise</td>
<td>See ripple & noise section, V<sub>oc</sub></td>
<td>30</td>
<td>60</td>
<td></td>
<td>mVp-p</td>
</tr>
<tr>
<td>OVP Over voltage protection</td>
<td>T<sub>P1</sub> = +25°C, V<sub>i</sub> = 53 V, 1-100% of max I<sub>o</sub></td>
<td>19</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Sink current drawn by external device connected to the RC pin.

Note 2: Minimum 0.9W load is required to guaranty line and load regulation

Note 3: Low ESR value
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Typical Characteristics
15 V, 5.7 A / 86 W

Efficiency

Power Dissipation

Output Characteristics

Current Limit Characteristics

Output Characteristics at light load
Typical Characteristics
15 V, 5.7 A / 86 W

Start-up

Start-up enabled by connecting VIn at:
TIn = +25°C, VIn = 53 V,
Io = 5.7 A resistive load.

Top trace: Output voltage (5 V/div.),
Bottom trace: Input voltage (50 V/div.),
Time scale: (10 ms/div.).

Output Ripple & Noise

Output voltage ripple:
TIn = +25°C, VIn = 53 V,
Io = 5.7 A resistive load.
Time scale: (2 µs/div.),
Trace: output voltage (10 mV/div.),
20 MHz bandwidth filter 10 µF + 0.1 µF

Output Load Transient Response

Output voltage response to load current step-change (1.4 – 4.3 – 1.4 A) at:
C0 = 800 µF,
TIn = +25°C, VIn = 53 V.
Top trace: Output voltage (0.5 V/div.),
Bottom trace: Load current (2 A/div.),
Time scale: (1 ms/div.).

Output Voltage Adjust (see operating information)

Passive adjust

The resistor value for an adjusted output voltage is calculated by using the following equations:

Output Voltage Adjust Upwards, Increase:

\[
R_{adj} = 5.11 \times \left(15 \left(100 + \Delta\% \right) \frac{100 + 2 \times \Delta\%}{1.225 \times \Delta\%} \right) \text{k\(\Omega\)}
\]

Example: Increase 4% \(\Rightarrow V_{out} = 15.6 \text{ Vdc}\)

\[
5.11 \times \left(15 \left(100 + 4\right) \frac{100 + 2 \times 4}{1.225 \times 4} \right) \text{k\(\Omega\)} = 1488 \text{ k\(\Omega\)}
\]

Output Voltage Adjust Downwards, Decrease:

\[
R_{adj} = 5.11 \times \left(100 \frac{100 - \Delta\%}{\Delta\%} - 2 \right) \text{k\(\Omega\)}
\]

Example: Decrease 2% \(\Rightarrow V_{out} = 14.7 \text{ Vdc}\)

\[
5.11 \times \left(100 \frac{100 - 2}{2} \right) \text{k\(\Omega\)} = 245 \text{ k\(\Omega\)}
\]
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Typical Characteristics
15 V, 5.7 A / 86 W

Output Current Derating – Open frame

Output Current Derating – Cold wall sealed box

Available load current vs. ambient air temperature and airflow at
\(V_I = 53 \, V \), \(V_O = 12 \, V \). See Thermal Consideration section.

Available load current vs. cold wall temperature.
\(V_I = 53 \, V \), \(V_O = 12 \, V \). See Thermal Consideration section.
EMC Specification
Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental switching frequency is 415 kHz for PKU 4813C. The EMI characteristics below is measured at $V_i = 53$ V and max I_o.

Conducted EMI Input terminal value (typ)

![EMI without filter]

Optional external filter for class B
Suggested external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J. Filter optimized for minimum PWB area.

Filter components:
- $C_1 = 4.7 \mu F$
- $C_2 = 2 \times 4.7 \mu F$
- $C_3 = 2 \times 4.7 \mu F + 47 \mu F$ (e-lyt)
- C_4, $C_5 = 4 \times 4.7 nF$
- $L_1 = 1.47 mH$
- $L_2 = 2.2 \mu H$

![EMI with filter]

Test set-up

Layout recommendations
The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.

Output ripple and noise
Output ripple and noise is measured according to figure below. See Design Note 022 for detailed information.
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Technical Specification
28701-BMR67103 Rev D November 2017
© Flex

Operating information

Input Voltage
The input voltage range 36 to 75 Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 and -60 Vdc systems, -40.5 to -57.0 V and -50.0 to -72 V respectively.
At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and T increased must be limited to absolute max +125°C. The absolute maximum continuous input voltage is 80 Vdc.

Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependant on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like Zener diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 describes the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect.

Turn-off Input Voltage
The products monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is 1 V.

Remote Control (RC)

The products are fitted with a remote control function referenced to the primary negative input connection (-In), with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor.

The external device must provide a minimum required sink current to guarantee a voltage not higher than maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 4 - 5 V.

The standard product is provided with "negative logic" RC and will be off until the RC pin is connected to the -In. To turn off the product the RC pin should be left open, or connected to a voltage higher than 2 V referenced to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin can be wired directly to -In.

The second option is "positive logic" remote control, which can be ordered by adding the suffix "P" to the end of the part number. When the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the -In. The product will restart automatically when this connection is opened.

See Design Note 021 for detailed information.

Input and Output Impedance
The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The source impedance, including the ESR value in the external capacitance shall be below 0.25Ω over the temperature range to prevent degradation of function and performance. The products are designed for stable operation with a minimum of 47 µF external capacitance with low ESR value connected to the input. The electrolytic capacitors will be degraded in low temperature and the ESR value may increase. The needed input capacitance in low temperature should be equivalent to 47 µF at 20°C. This means that the input capacitor value may be substantially larger to guarantee a stable input at low temperatures. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

External Decoupling Capacitors
When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PWB layouts and cabling.

External decoupling capacitors will become part of the product's control loop. The control loop is optimized for a wide range of external capacitance and the maximum and minimum recommended value that could be used without any additional analysis is found in the Electrical specification.

For further information please contact your local Flex Power Modules representative.

Output Voltage Adjust (Vadj)
The products have an Output Voltage Adjust pin (Vadj). This pin can be used to adjust the output voltage above or below Output voltage initial setting.

When increasing the output voltage, the voltage at the output
pins must be kept below the threshold of the over voltage protection, (OVP) to prevent the product from shutting down. At increased output voltages the maximum power rating of the product remains the same, and the max output current must be decreased correspondingly.

To increase the output voltage a resistor should be connected between the \(V_{\text{adj}} \) pin and +Out pin. The value of the adjust resistor should be calculated according to the formulas provided in the Electrical Specification section for the respective product.

To decrease the output voltage, the resistor should be connected between the \(V_{\text{adj}} \) pin and –Out pin.

Parallel Operation

This product is not intended for load sharing. However two products may be paralleled for redundancy if the total power is equal or less than \(P_{\text{O}} \) max. No external circuits are needed.

See Design Note 006 for detailed information.

Over Temperature Protection (OTP)

The products are protected from thermal overload by an internal over temperature shutdown circuit. When \(T_{\text{P97}} \) as defined in thermal consideration section exceeds 130°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >5°C below the temperature threshold.

Over Voltage Protection (OVP)

The products have output over voltage protection that will shut down the product in over voltage conditions. The product will resume normal operation automatically after removal of the over voltage condition.

Over Current Protection (OCP)

The products include current limiting circuitry for protection at continuous overload. The OCP works in a hiccup mode and will make continuous attempts to start up and will resume normal operation automatically after removal of the over current condition. The load distribution should be designed for the maximum output short circuit current specified.

Pre-bias Start-up

The product has a Pre-bias start up functionality and will not sink current during start up if a pre-bias load is present at the output terminals.
Thermal Consideration

General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PWB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependent on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at \(V_I = 48 \text{ V} \).

The product is tested on a 254 x 254 mm, 35 µm (1 oz), 16-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.

For products with gap-pad used in a sealed box/cold wall application, cooling is achieved mainly by conduction through the cold wall. The thermal performance can be optimized if a profiled cold wall and gap-pad is used. For detailed information check the mechanical drawings. The product performance has been tested in a sealed box presented in the figure below in combination with a gap-pad and profiled cold wall. The ambient temperature (inside the box) has been set to 85°C. The cold wall temperature varied. The Output Current Derating graphs are found in the Output section for each model. See Design Note 028 for further details.

Gap-pad between cold wall and module ferrites:
Bergquist 5000S35, 2mm compressed to 1.2mm.
Hardness shore (00) 35.
Thermal conductivity 5.0 W/m-K

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Reference point, Inductor</td>
<td>(T_{P1} = 125^\circ \text{C})</td>
</tr>
<tr>
<td>P2</td>
<td>Mosfet case</td>
<td>(T_{P2} = 125^\circ \text{C})</td>
</tr>
<tr>
<td>P3</td>
<td>Mosfet case</td>
<td>(T_{P3} = 125^\circ \text{C})</td>
</tr>
<tr>
<td>P4</td>
<td>Diode</td>
<td>(T_{P4} = 125^\circ \text{C})</td>
</tr>
</tbody>
</table>
Connections (top side)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+In</td>
<td>Positive input</td>
</tr>
<tr>
<td>2</td>
<td>RC</td>
<td>Remote control</td>
</tr>
<tr>
<td>3</td>
<td>-In</td>
<td>Negative input</td>
</tr>
<tr>
<td>4</td>
<td>-Out</td>
<td>Negative output</td>
</tr>
<tr>
<td>5</td>
<td>V_{adj}</td>
<td>Output voltage adjust</td>
</tr>
<tr>
<td>6</td>
<td>+Out</td>
<td>Positive output</td>
</tr>
</tbody>
</table>
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Mechanical Information - Surface Mount Version

Pin positions according to recommended footprint

RECOMMENDED FOOTPRINT - TOP VIEW

Recommended pad dimensions are only for reference.
It is the end user’s decision based on different situations like production processes, substrate thickness etc.

Weights: Typical 150 g
All dimensions in mm [inch]
Tolerances unless specified:
x±0.35 [0.01]
xxx±0.25 [0.01]

Recommended keep away area for user components.

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Technical Specification
28701-BMR67103 Rev D November 2017
© Flex

Mechanical Information – Thru Hole Version

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.

Table 1

<table>
<thead>
<tr>
<th>Pin option</th>
<th>Lead length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>3.3 mm (0.13")</td>
</tr>
<tr>
<td>LA</td>
<td>3.2 mm (0.13")</td>
</tr>
<tr>
<td>LB</td>
<td>4.57 mm (0.18")</td>
</tr>
<tr>
<td>LC</td>
<td>2.79 mm (0.11")</td>
</tr>
</tbody>
</table>

PIN SPECIFICATIONS
Pin 1-6: Molding (copper alloy)
Pinning: Min Au 0.1 µm over 1-3 µm Ni

**Recommended hole dimensions are only for reference, it is the end user's decision based on different situations like production processes, substrate thickness, etc.
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

Thermal pad:
The thermal gap pad is intended to withdraw heat from the ferrite and transport the heat through the thermal material to the cold wall. The gap pad must be carefully chosen in accordance with thermal conductivity and mounting pressure. To choose the correct gap filler material, height difference between the two ferrites must be taken into consideration.

Heat transportation from ferrite to cold wall (see arrows)

Technical Specification
PKU 4800C Series DC-DC Converters
Input 36-75 V, Output up to 7 A / 86 W

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
Soldering Information - Surface Mounting

The surface mount product is intended for forced convection or vapor phase reflow soldering in SnPb and Pb-free processes.

The reflow profile should be optimised to avoid excessive heating of the product. It is recommended to have a sufficiently extended preheat time to ensure an even temperature across the host PWB and it is also recommended to minimize the time in reflow.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board, since cleaning residues may affect long time reliability and isolation voltage.

<table>
<thead>
<tr>
<th>General reflow process specifications</th>
<th>SnPb eutectic</th>
<th>Pb-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average ramp-up (T<sub>PRODUCT</sub>)</td>
<td>3°C/s max</td>
<td>3°C/s max</td>
</tr>
<tr>
<td>Typical solder melting (liquidus) temperature</td>
<td>T<sub>L</sub></td>
<td>183°C</td>
</tr>
<tr>
<td>Minimum reflow time above T<sub>L</sub></td>
<td>60 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Minimum pin temperature</td>
<td>T<sub>PIN</sub></td>
<td>210°C</td>
</tr>
<tr>
<td>Peak product temperature</td>
<td>T<sub>PRODUCT</sub></td>
<td>225°C</td>
</tr>
<tr>
<td>Average ramp-down (T<sub>PRODUCT</sub>)</td>
<td>6°C/s max</td>
<td>6°C/s max</td>
</tr>
<tr>
<td>Maximum time 25°C to peak</td>
<td>6 minutes</td>
<td>8 minutes</td>
</tr>
</tbody>
</table>

Minimum Pin Temperature Recommendations

Pin number 3 chosen as reference location for the minimum pin temperature recommendation since this will likely be the coolest solder joint during the reflow process.

SnPb solder processes

For SnPb solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature (T_L, 183°C for Sn63Pb37) for more than 60 seconds and a peak temperature of 220°C is recommended to ensure a reliable solder joint.

For dry packed products only: depending on the type of solder paste and flux system used on the host board, up to a recommended maximum temperature of 245°C could be used, if the products are kept in a controlled environment (dry pack handling and storage) prior to assembly.

Lead-free (Pb-free) solder processes

For Pb-free solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature (T_L, 217 to 221°C for SnAgCu solder alloys) for more than 60 seconds and a peak temperature of 245°C on all solder joints is recommended to ensure a reliable solder joint.

Maximum Product Temperature Requirements

Top of the product PWB near pin 6 is chosen as reference location for the maximum (peak) allowed product temperature (T_{PRODUCT}) since this will likely be the warmest part of the product during the reflow process.

SnPb solder processes

For SnPb solder processes, the product is qualified for MSL 1 according to IPC/JEDEC standard J-STD-020C.

During reflow T_{PRODUCT} must not exceed 225 °C at any time.

Pb-free solder processes

For Pb-free solder processes, the product is qualified for MSL 3 according to IPC/JEDEC standard J-STD-020C.

During reflow T_{PRODUCT} must not exceed 260 °C at any time.

Dry Pack Information

Products intended for Pb-free reflow soldering processes are delivered in standard moisture barrier bags according to IPC/JEDEC standard J-STD-033 (Handling, packing, shipping and use of moisture/reflow sensitivity surface mount devices).

Using products in high temperature Pb-free soldering processes requires dry pack storage and handling. In case the products have been stored in an uncontrolled environment and no longer can be considered dry, the modules must be baked according to J-STD-033.

Thermocoupler Attachment

Top of PWB near pin 6 for measurement of maximum product temperature, T_{PRODUCT}
Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.

A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic injection molded trays (Jedec design guide 4.10D standard) and in antistatic trays.

<table>
<thead>
<tr>
<th>Tray Specifications – SMD /Pin in paste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material: Antistatic PPE</td>
</tr>
<tr>
<td>Surface resistance: (10^7 \text{ Ohm/square} < 10^{11})</td>
</tr>
<tr>
<td>Bakability: The trays can be baked at maximum 125°C for 48 hours</td>
</tr>
<tr>
<td>Tray thickness: 18.50 mm 0.728 [inch]</td>
</tr>
<tr>
<td>Box capacity: 150 products (5 full trays/box)</td>
</tr>
<tr>
<td>Tray weight: 125 g empty, 500 g full tray</td>
</tr>
</tbody>
</table>

JEDEC standard tray for 3x10 = 30 products.
All dimensions in mm [inch]
Tolerances: X \(\pm0.26 [0.01]\), X.xx \(\pm0.13 [0.005]\)
Note: pick up positions refer to center of pocket.
See mechanical drawing for exact location on product.
PKU 4800C Series DC-DC Converters

Input 36-75 V, Output up to 7 A / 86 W

Technical Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External visual inspection</td>
<td>IPC-A-610</td>
</tr>
<tr>
<td>Change of temperature (Temperature cycling)</td>
<td>IEC 60068-2-14 Na</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 60068-2-1 Ad</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-67 Cy</td>
</tr>
<tr>
<td>Dry heat</td>
<td>IEC 60068-2-2 Bd</td>
</tr>
<tr>
<td>Electrostatic discharge susceptibility</td>
<td>IEC 61340-3-1, JESD 22-A114</td>
</tr>
<tr>
<td>Immersion in cleaning solvents</td>
<td>IEC 60068-2-45XA, method 2</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>IEC 60068-2-27 Ea</td>
</tr>
<tr>
<td>Moisture reflow sensitivity</td>
<td>J-STD-020C</td>
</tr>
<tr>
<td>Operational life test</td>
<td>MIL-STD-202G, method 108A</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td>IEC 60068-2-20 Tb, method 1A</td>
</tr>
<tr>
<td>Robustness of terminations</td>
<td>IEC 60068-2-21 Test Ua1, IEC 60068-2-21 Test Ue1</td>
</tr>
<tr>
<td>Solderability</td>
<td>IEC 60068-2-58 test Td, IEC 60068-2-20 test Ta</td>
</tr>
<tr>
<td>Vibration, broad band random</td>
<td>IEC 60068-2-64 Fh, method 1</td>
</tr>
</tbody>
</table>

Notes

1. Only for products intended for reflow soldering (surface mount products)
2. Only for products intended for wave soldering (plated through hole products)