PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Key Features
- Industry standard low profile Eighth-brick
 58.4 x 22.7 x 9.6 mm (2.30 x 0.89 x 0.38 in)
- High efficiency, typical 96 % at 48Vin, 12 Vout, half load
- 2250 Vdc input to output isolation
- Pre-bias start up
- Optional Baseplate
- Optional SMD version
- Meets safety requirements according to IEC/EN/UL 60950-1
- MTBF 8.9 Million hours

General Characteristics
- Input under voltage shutdown
- Monotonic start-up
- Remote control
- Output over voltage protection
- Over temperature protection
- Output short-circuit protection
- Highly automated manufacturing ensures quality
- ISO 9001/14001 certified supplier

Contents
Ordering Information .. 2
General Information .. 2
Safety Specification .. 3
Absolute Maximum Ratings ... 4

Electrical Specification
12 V, 25A / 300 W PKB 4313D .. 5
12 V, 22A / 264 W PKB 4213D .. 9
10 V, 25A / 250 W PKB 4217ND 13

EMC Specification .. 17
Operating Information ... 18
Thermal Consideration ... 20
Connections .. 21
Mechanical Information ... 22
Soldering Information .. 25
Delivery Information .. 26
Product Qualification Specification 28
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKB 4313 D</td>
<td>12 V, 25 A / 300 W</td>
</tr>
<tr>
<td>PKB 4213 D</td>
<td>12 V, 22 A / 264 W</td>
</tr>
<tr>
<td>PKB 4217ND</td>
<td>10 V, 25 A / 250 W</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKB 4313D m1m2m3m4m5</td>
<td></td>
</tr>
<tr>
<td>Mounting</td>
<td>o</td>
</tr>
<tr>
<td>Remote Control logic</td>
<td>o</td>
</tr>
<tr>
<td>Baseplate</td>
<td>o</td>
</tr>
<tr>
<td>Lead length</td>
<td>o</td>
</tr>
<tr>
<td>Delivery package information</td>
<td>o</td>
</tr>
</tbody>
</table>

Options Description

n1 SI Surface mount
PI Through hole
n2 P Positive
 Negative *
 Open frame*
 Baseplate
n4 LA 3.69 mm (Pin-cut)
 LB 4.57 mm (Pin-cut)
 5.30 mm *

n5 /B Tray of 100 products

Example: a through hole mounted with baseplate, positive logic, 4.57 mm pin length 12V product with tray package would be PKB 4313D PIPIPIB/B

* Standard variant (i.e. no option selected).

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF= 1/λ) is calculated at max output power and an operating ambient temperature (Tamb) of +40°C. Flex Power Modules uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure rate, nFailures/h</th>
<th>Std. deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>8.7</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKB 4313D series = 8.9 Mh.
MTBF at 90% confidence level = 8.1 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogenous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogenous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex Power Modules products are found in the Statement of Compliance document.

Flex Power Modules fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex Power Modules General Terms and Conditions of Sale.

Limitation of Liability

Flex Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2017

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
Safety Specification

General information

Flex Power Modules DC/DC converters and DC/DC regulators are designed in accordance with the safety standards IEC 60950-1, EN 60950-1 and UL 60950-1 Safety of Information Technology Equipment.

IEC/EN/UL 60950-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC/DC converters and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without “conditions of acceptability”. Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information and Safety Certificate for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use should comply with the requirements in IEC/EN/UL 60950-1 Safety of Information Technology Equipment. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/EN/UL 60950-1 with regards to safety.

Flex Power Modules DC/DC converters, Power interface modules and DC/DC regulators are UL 60950-1 recognized and certified in accordance with EN 60950-1. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, Fire hazard testing, test flames – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters

The product may provide basic or functional insulation between input and output according to IEC/EN/UL 60950-1 (see Safety Certificate), different conditions shall be met if the output of a basic or a functional insulated product shall be considered as safety extra low voltage (SELV).

For basic insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides functional or basic insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 60950-1.

For functional insulated products (see Safety Certificate) the output is considered as safety extra low voltage (SELV) if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/EN/UL 60950-1.
- The input source provides basic or supplementary insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 60950-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/EN/UL 60950-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage (Vac) meets the voltage strength requirement for basic insulation according to IEC/EN/UL 60950-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{P1}</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_{S}</td>
<td>-55</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>V_i</td>
<td>-0.5</td>
<td>+80</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_{out}</td>
<td>100</td>
<td></td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>V_{in}</td>
<td>2250</td>
<td></td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>V_{iso}</td>
<td>1500</td>
<td></td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>V_{iso}</td>
<td>750</td>
<td></td>
<td>Vdc</td>
<td></td>
</tr>
<tr>
<td>V_{in}</td>
<td>100</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{RC}</td>
<td>-0.5</td>
<td>6</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the Electrical Specification section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Fundamental Circuit Diagram

![Fundamental Circuit Diagram](image)
Electrical Specification

12.0 V, 25 A / 300 W

\(T_{jk} = -40 \pm 95^\circ \text{C}, V_{\text{i}} = 36 \text{ to } 75 \text{ V}, \) unless otherwise specified under Conditions.

Typical values given at: \(T_{jk} = +25^\circ \text{C}, V_{\text{i}} = 53 \text{ V}, \) max \(I_{\text{o}} \), unless otherwise specified under Conditions.

Additional \(C_{\text{in}} = 100 \mu \text{F}, C_{\text{out}} = 100 \mu \text{F}. \) See Operating Information section for selection of capacitor types.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{i}}) Input voltage range</td>
<td></td>
<td>36</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{off}}) Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{on}}) Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>(C_{\text{i}}) Internal input capacitance (V_{\text{i}} = 53 \text{ V})</td>
<td></td>
<td>9</td>
<td>µF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{o}}) Output power</td>
<td></td>
<td>0</td>
<td>300</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(\eta) Efficiency</td>
<td>50% of max (I_{\text{o}})</td>
<td>96</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (I_{\text{o}})</td>
<td>95.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50% of max (I_{\text{o}}, V_{\text{i}} = 48 \text{ V})</td>
<td>96.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (I_{\text{o}}, V_{\text{i}} = 48 \text{ V})</td>
<td>95.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{d}}) Power Dissipation () max (I_{\text{o}})</td>
<td></td>
<td>13.4</td>
<td>17.1</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{i}}) Input idling power</td>
<td>(I_{\text{o}} = 0 \text{ A}, V_{\text{i}} = 53 \text{ V})</td>
<td>3</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{RC}}) Input standby power</td>
<td>(V_{\text{i}} = 53 \text{ V}) (turned off with RC)</td>
<td>1</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{\text{s}}) Switching frequency</td>
<td>0-100% of max (I_{\text{o}})</td>
<td>390</td>
<td>415</td>
<td>440</td>
<td>kHz</td>
</tr>
</tbody>
</table>

\(V_{\text{oh}} \) Output voltage initial setting and accuracy

\(T_{jk} = +25^\circ \text{C}, V_{\text{i}} = 53 \text{ V}, I_{\text{o}} = 25 \text{ A} \)

\(11.76 \) \(12 \) \(12.24 \) \(V \)

\(V_{\text{os}} \) Output voltage tolerance band

\(0-100\% \) of max \(I_{\text{o}}, V_{\text{i}} = 42-75 \text{ V} \)

\(11.64 \) \(12.36 \) \(V \)

\(I_{\text{o}} \) Idling voltage

\(I_{\text{o}} = 0 \text{ A}, V_{\text{i}} = 42-75 \text{ V} \)

\(11.64 \) \(12.36 \) \(V \)

\(V_{\text{li}} \) Line regulation

\(V_{\text{i}} = 43-75 \text{ V}, \) max \(I_{\text{o}} \)

\(4 \) \(30 \) \(mV \)

\(V_{\text{rl}} \) Load regulation

\(V_{\text{i}} = 53 \text{ V}, \) 0-100% of max \(I_{\text{o}} \)

\(3 \) \(20 \) \(mV \)

\(V_{\text{tr}} \) Load transient voltage deviation

\(V_{\text{i}} = 53 \text{ V}, \) Load step 25-75-25% of max \(I_{\text{o}}, \) di/dt = 1 A/\(\mu \text{s}, C_{\text{o}} = 1 \mu \text{F} \)

\(\pm250 \) \(400 \) \(mV \)

\(I_{\text{tr}} \) Load transient recovery time

\(\pm250 \) \(400 \) \(mV \)

\(t_{\text{r}} \) Ramp-up time (from 10-90% of \(V_{\text{oh}} \))

\(10-100\% \) of max \(I_{\text{o}} \)

\(11 \) \(18 \) \(ms \)

\(I_{\text{s}} \) Start-up time (from \(V_{\text{oh}} \) connection to 90% of \(V_{\text{oh}} \))

\(15 \) \(22 \) \(ms \)

\(I_{\text{ec}} \) RC start-up time (from \(V_{\text{oh}} \) connection to 90% of \(V_{\text{oh}} \))

\(\text{max} \) \(I_{\text{o}} \)

\(15 \) \(25 \) \(ms \)

\(R_{\text{C}} \) Sink current, see Note 1

See operating information

\(0.5 \) \(mA \)

\(R_{\text{C}} \) Trigger level

Decreasing / Increasing RC-voltage

\(1.5 / 2.5 \) \(V \)

\(R_{\text{C}} \) Response time

\(0.1 \) \(0.5 \) \(ms \)

\(I_{\text{o}} \) Output current

\(0 \) \(25 \) \(A \)

\(I_{\text{em}} \) Current limit threshold

\(T_{ji} < \text{max} \) \(T_{ji} \)

\(27 \) \(32.5 \) \(37 \) \(A \)

\(I_{\text{sc}} \) Short circuit current

\(T_{ji} = 25^\circ \text{C}, \) see Note 2

\(5 \) \(A \)

\(C_{\text{out}} \) Recommended Capacitive Load

\(T_{ji} = 25^\circ \text{C}, \) see Note 3

\(100 \) \(10000 \) \(\mu \text{F} \)

\(V_{\text{osc}} \) Output ripple & noise

See ripple & noise section, \(V_{\text{os}} \)

\(32 \) \(100 \) \(\mu \text{Vp-p} \)

\(OVP \) Over voltage protection

\(T_{ji} = +25^\circ \text{C}, V_{\text{i}} = 53 \text{ V}, \) 50% of max \(I_{\text{o}} \)

\(14.5 \) \(V \)

Notes:

1. Sink current drawn by external device connected to the RC pin
2. RMS current at OCP in hic-up mode
3. 100-5000uF Low ESR value,
Typical Characteristics
12.0 V, 25 A / 300 W

Efficiency

![Efficiency vs. load current and input voltage at T_{PI} = +25°C.](image)

Output Characteristics

![Output voltage vs. load current at T_{PI} = +25°C.](image)

Current Limit Characteristics

![Output voltage vs. load current at I_0 > max I_0, T_{PI} = +25°C.](image)

Power Dissipation

![Dissipated power vs. load current and input voltage at T_{PI} = +25°C.](image)

Output Characteristics

![Output voltage vs. input voltage and load current at T_{PI} = +25°C.](image)

Available Power

![Output power vs. input voltage at T_{PI} = +25°C.](image)
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Typical Characteristics
12.0 V, 25 A / 300 W

Start-up

Top trace: Output voltage (5 V/div.).
Bottom trace: Input voltage (50 V/div.).
Time scale: (10 ms/div.).

Shut-down

Top trace: Output voltage (5 V/div.).
Bottom trace: Input voltage (50 V/div.).
Time scale: (10 ms/div.).

Output Ripple & Noise

Output voltage ripple at:
Top trace: output voltage (20 mV/div.).
Bottom trace: Input voltage (2 µV/div.).
Trace: output voltage (20 mV/div.).
Time scale: (2 µs/div.).
20 MHz bandwidth filter 10 µF + 0.1 µF

Output Load Transient Response

Output voltage response to load current step-change (6.25 – 18.75 – 6.25 A) at:
Top trace: output voltage (0.5 V/div.).
Bottom trace: output current (10 A/div.).
Trace: output voltage (0.5 V/div.).
Time scale: (0.5 ms/div.).
Typical Characteristics

12 V, 25 A / 300 W

Output Current Derating – Open frame

Available load current vs. ambient air temperature and airflow at $V_I = 53$ V. See Thermal Consideration section.

Output Current Derating – Base plate

Available load current vs. ambient air temperature and airflow at $V_I = 53$ V. See Thermal Consideration section.

Output Current Derating – Cold wall sealed box

Available load current vs. cold wall temperature. $V_I = 53$ V. See Thermal Consideration section.

Thermal Resistance – Base plate

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_I = 53$ V.
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Electrical Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{in}</td>
<td>Input voltage range</td>
<td>36</td>
<td>33</td>
<td>75</td>
<td>V</td>
</tr>
<tr>
<td>V_{off}</td>
<td>Turn-off input voltage</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>V</td>
</tr>
<tr>
<td>V_{on}</td>
<td>Turn-on input voltage</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>C_{i}</td>
<td>Internal input capacitance</td>
<td>V_{i} = 53 V</td>
<td>9</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>P_{o}</td>
<td>Output power</td>
<td>0</td>
<td>264</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_{o}</td>
<td>95.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{o}</td>
<td>95.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I_{o}, V_{i} = 48 V</td>
<td>95.4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{o}, V_{i} = 48 V</td>
<td>95.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P_{d}</td>
<td>Power Dissipation</td>
<td>max I_{o}</td>
<td>13.8</td>
<td>19</td>
<td>W</td>
</tr>
<tr>
<td>P_{id}</td>
<td>Input idling power</td>
<td>I_{o} = 0 A, V_{i} = 53 V</td>
<td>3.5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_{nc}</td>
<td>Input standby power</td>
<td>V_{i} = 53 V (turned off with RC)</td>
<td>1</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>f_{s}</td>
<td>Switching frequency</td>
<td>0-100 % of max I_{o}</td>
<td>390</td>
<td>415</td>
<td>440</td>
</tr>
</tbody>
</table>

V_{Oi}	Output voltage initial setting and accuracy	T_{p1} = +25°C, V_{i} = 53 V, I_{o} = 22 A	11.76	12	12.24	V
Output voltage tolerance band	0-100% of max I_{o}, V_{i} = 36-75 V	11.64	12.36	V		
Idling voltage	I_{o} = 0 A, V_{i} = 36-75 V	11.76	12.24	V		
Line regulation	V_{i} = 36-75 V, max I_{o}	3	20	mV		
Load regulation	V_{i} = 53 V, 0-100% of max I_{o}	3	20	mV		
V_{t}	Load transient voltage deviation	V_{i} = 53 V, Load step 25-75-25% of max I_{o}, di/dt = 1 A/µs, C_{o} = 1 mF	±220	350	mV	
t_{r}	Load transient recovery time	25	100	µs		
t	Ramp-up time (from 10-90% of V_{o})	12	18	ms		
t_{e}	Start-up time (from V_{i} connection to 90% of V_{o})	17	22	ms		
t_{nc}	RC start-up time (from V_{nc} connection to 90% of V_{o})	max I_{o}	17	25	ms	
RC	Sink current, see Note 1	0.5	mA			
Trigger level	See operating information	1.5 / 2.5	V			
Response time	Decreasing / Increasing RC-voltage	0.1	0.5	ms		
I_{o}	Output current	0	22	A		
I_{en}	Current limit threshold	T_{p1} < max T_{p1}	23	28	33	A
I_{sc}	Short circuit current	T_{p1} = 25°C, see Note 2	5	A		
C_{out}	Recommended Capacitive Load	T_{p1} = 25°C, see Note 3	100	10000	µF	
V_{OVP}	Output ripple & noise	See ripple & noise section, V_{o}	40	100	mVp-p	
OVP	Over voltage protection	T_{p1} = +25°C, V_{i} = 53 V, 50% of max I_{o}	15.4	V		

Note 1: Sink current drawn by external device connected to the RC pin
Note 2: RMS current at OCP in hic-up mode
Note 3: Low ESR value
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Typical Characteristics

Efficiency

Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Power Dissipation

Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Output Characteristics

Output voltage vs. load current at $T_{P1} = +25^\circ C$.

Available Power

Output power vs. input voltage at $T_{P1} = +25^\circ C$.

Current Limit Characteristics

Output voltage vs. load current at $I_o > max I_o, T_{P1} = +25^\circ C$.

PKB4213D
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Typical Characteristics
12.0 V, 22 A / 264 W

Start-up

Shut-down

Output Ripple & Noise

Output Load Transient Response

PKB4213D
Typical Characteristics

PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

PKB413D

Output Current Derating – Open frame

Available load current vs. ambient air temperature and airflow at $V_i = 53$ V. See Thermal Consideration section.

Output Current Derating – Base plate

Available load current vs. ambient air temperature and airflow at $V_i = 53$ V. See Thermal Consideration section.

Output Current Derating – Cold wall sealed box

Available load current vs. cold wall temperature. $V_i = 53$ V. See Thermal Consideration section.

Thermal Resistance – Base plate

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_i = 53$ V.
Electrical Specification

PKB4000D series

Input: 36-75 V, **Output:** up to 25 A / 300 W

PKB4217ND

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vin Input voltage range</td>
<td>T_{ref} = +25°C, V_i = 53 V, I_o = 25 A</td>
<td>9.80</td>
<td>10</td>
<td>10.20</td>
<td>V</td>
</tr>
<tr>
<td>V_{ouf} Turn-off input voltage</td>
<td>0-100% of max I_o, V_i = 36-75 V</td>
<td>9.70</td>
<td>10.30</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{on} Turn-on input voltage</td>
<td>I_o = 0 A, V_i = 36-75 V</td>
<td>9.70</td>
<td>10.30</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>C_i Internal input capacitance</td>
<td>V_i = 53 V</td>
<td>2</td>
<td>40</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>P_o Output power</td>
<td>V_i = 53 V, 0-100% of max I_o</td>
<td>2</td>
<td>30</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>P_d Power Dissipation</td>
<td>I_o = 25 A, V_i = 53 V</td>
<td>±230</td>
<td>365</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>I_o Load transient recovery time</td>
<td>I_o = 25 A, di/dt = 1 A/µs, C_{out} = 1 µF</td>
<td>25</td>
<td>150</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>t_r Ramp-up time (from 10-90% of V_{in})</td>
<td>10-100% of max I_o</td>
<td>12</td>
<td>18</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>I_{st} Start-up time (from V_{in} connection to 90% of V_{in})</td>
<td>17</td>
<td>22</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ec} RC start-up time (from V_{in} connection to 90% of V_{in})</td>
<td>max I_o</td>
<td>17</td>
<td>25</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>RC Sink current, see Note 1</td>
<td>See operating information</td>
<td>0.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger level Decreasing / Increasing RC-voltage</td>
<td>1.5 / 2.5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_o Output current</td>
<td>0</td>
<td>25</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{lm} Current limit threshold</td>
<td>T_{ref} = max</td>
<td>27.5</td>
<td>32</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>I_{sc} Short circuit current</td>
<td>T_{ref} = 25°C, See Note 2</td>
<td>5</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>C_{out} Recommended Capacitive Load</td>
<td>T_{ref} = 25°C, see Note 3</td>
<td>100</td>
<td>10000</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>V_{os} Output ripple & noise</td>
<td>See ripple & noise section, V_{in}</td>
<td>50</td>
<td>150</td>
<td>mVp-p</td>
<td></td>
</tr>
<tr>
<td>OVP Over voltage protection</td>
<td>T_{ref} = +25°C, V_i = 53 V, 50% of max I_o</td>
<td>12.2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Sink current drawn by external device connected to the RC pin
2. RMS current at OCP in hiccup mode
3. Low ESR value
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Typical Characteristics

10.0 V, 25 A / 250 W

Efficiency

![Efficiency Graph](image)

Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ$C.

Power Dissipation

![Power Dissipation Graph](image)

Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ$C.

Output Characteristics

![Output Voltage Graph](image)

Output voltage vs. load current at $T_{P1} = +25^\circ$C.

Available Power

![Available Power Graph](image)

Output power vs. input voltage at $T_{P1} = +25^\circ$C.

Current Limit Characteristics

![Current Limit Graph](image)

Output voltage vs. load current at $I_o > I_{o}$, $T_{P1} = +25^\circ$C.
Typical Characteristics

10.0 V, 25 A / 250 W

PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Start-up enabled by connecting VI at:

- $T_{IN} = +25^\circ C, V_I = 53 V$,
- $I_O = 25 A$ resistive load.

Top trace: Output voltage (5 V/div.).
Bottom trace: Input voltage (50 V/div.).
Time scale: (10 ms/div.).

Output voltage ripple at:

- $T_{IN} = +25^\circ C, V_I = 53 V$,
- $I_O = 25 A$ resistive load.

Trace: output voltage (50 mV/div.).
Time scale: (2 µs/div.).
20 MHz bandwidth filter 10 µF+0.1 µF

Output Load Transient Response

Output voltage response to load current step-change (6.25 – 18.75 – 6.25 A)

- $T_{IN} = +25^\circ C, V_I = 53 V$,
- $I_O = 25 A$ resistive load.

Top trace: Output voltage (0.2 V/div.).
Bottom trace: Output current (10 A/div.).
Time scale: (0.5 ms/div.).
Technical Specification

PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

PKB4217ND

Typical Characteristics
10 V, 25 A / 250 W

Output Current Derating – Open frame

Output Current Derating – Base plate

Output Current Derating – Cold wall sealed box

Available load current vs. ambient air temperature and airflow at $V_I = 53$ V. See Thermal Consideration section.

Thermal Resistance – Base plate

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_I = 53$ V.

Available load current vs. cold wall temperature. $V_I = 53$ V. See Thermal Consideration section.
EMC Specification
Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 029 for further information. The fundamental switching frequency is 415 kHz for PKB4313D. The EMI characteristics below is measured at $V_i = 53$ V and max I_o.

Conducted EMI Input terminal value (typ)

Optional external filter for class B
Suggested external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

Filter components:
- $C_1 = 2.2 \mu F$
- $C_2 = 2.2 \mu F$
- $C_3 = 2.2 \mu F + 22 \mu F$ (e-lyt)
- $C_4, C_5 = 2 \times 10 \ nF$
- $L_1 = 0.59 \ mH$
- $L_2 = 2.2 \ \mu H$

Layout recommendations
The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and to the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.

Output ripple and noise
Output ripple and noise is measured according to figure below. See Design Note 022 for detailed information.
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Technical Specification

Operating Information

Input Voltage
The input voltage range 36 to 75 Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in –48 and -60 Vdc systems, -40.5 to -57 V and -50 to -72 V respectively.

At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and Tth must be limited to absolute max +125°C. The absolute maximum continuous input voltage is 80 Vdc.

Above 42 V the product operates with normal regulation with constant output voltage and constant maximum power. Below 42 V the output voltage starts to track the input voltage with a fixed proportion, keeping a duty-cycle guard band for regulation. The product operates down below 36 V before the internal under voltage lock out turns off the product.

Short duration transient disturbances can occur on the DC distribution and input of the product when a short circuit fault occurs on the equipment side of a protective device (fuse or circuit breaker). The voltage level, duration and energy of the disturbance are dependent on the particular DC distribution network characteristics and can be sufficient to damage the product unless measures are taken to suppress or absorb this energy. The transient voltage can be limited by capacitors and other energy absorbing devices like Zener diodes connected across the positive and negative input conductors at a number of strategic points in the distribution network. The end-user must secure that the transient voltage will not exceed the value stated in the Absolute maximum ratings. ETSI TR 100 283 examines the parameters of DC distribution networks and provides guidelines for controlling the transient and reduce its harmful effect.

Turn-off Input Voltage
The products monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is 2.5 V.

Remote Control (RC)
The products are fitted with a remote control function referenced to the primary negative input connection (-In), with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor or mechanical switch.

The RC pin has an internal pull up resistor of 10 kΩ to +5V. The external device must provide a minimum required sink current to guarantee a voltage not higher than maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 5 V.

The standard product is provided with “negative logic” RC. To turn off the product the RC pin should be left open, or connected to a voltage higher than 4 V referenced to -In. In situations where it is desired to have the product to power up automatically without the need for control signals or a switch, the RC pin can be wired directly to –In. To turn on the product the RC pin should be lower than 1V referenced to –In.

The second option is “positive logic” remote control, which can be ordered by adding the suffix “P” to the end of the part number. When the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to the –In, or a voltage lower than 1V referenced to -In. The product will restart automatically when this connection is opened.

The RC function incorporates a short delay in order to not trigger on glitches. Typically this filter has a settling time of 0.1-0.5 ms. This setup reduces the risk that the noise may cause the converter to shut down or power up accidentally.

See Design Note 021 for detailed information.

Input and Output Impedance
The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. The products are designed for stable operation with a minimum of 100 uF external capacitors connected to the input. The electrolytic capacitors will be degraded in low temperature and the ESR value may increase. The needed input capacitance in low temperature should be equivalent to 100 uF at 20°C. This means that the input capacitor value may need to be substantially larger to guarantee a stable input at low temperatures. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors. The minimum required capacitance value depends on the output power and the input voltage. The higher output power the higher input capacitance is needed.

External Decoupling Capacitors
When powering loads with significant dynamic current requirements, the voltage regulation at the load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PWB layouts and cabling.
External decoupling capacitors will become part of the product’s control loop. The control loop is optimized for a wide range of external capacitance and the maximum and minimum recommended value that could be used without any additional analysis is found in the Electrical specification. The ESR of the capacitors is a very important parameter. Stable operation is guaranteed with a verified ESR value of >1 mΩ across the output connections.

For further information please contact your local Flex Power Modules representative.

Hybrid Regulated Ratio (HRR)
The product uses two regulation modes. The regulated ratio mode let the regulator track the Vin with a fixed proportion, still with a guard band for load and transient regulation. The hybrid regulated mode swaps seamlessly from a ratio regulated mode to a normally regulated mode above a certain input voltage. See Output Characteristics in the Electrical Specification.

HRR uses a fast adaption system and a slow adaption system to react to both fast and slow input voltage changes to provide an input voltage feed-forward function. The fast adaption system prevents the converter to change output voltage very rapid. It filters sudden input voltage changes. The slow adaption system does not let fast input voltage transients through in the regulated ratio mode, it just slowly adapts to the new input voltage. When the input voltage changes the tracking system needs up to 3 ms to fully respond. In the normally regulated mode the tracking will be saturated and the converter regulates towards a precision reference voltage instead making it almost unsusceptible to transients.

Controlled low external output capacitor charge current at input voltage step
Due to the slow adaption system the HRR product efficiently reduces those charge currents for the external capacitors during an input voltage transient or level shift.

Voltage transients. This applies to both short duration transients and step-like level shifts of the input voltage. The amplitude of the output transients resulting of short duration transient at the input voltage will be less than 1V. In case of a step-like level shift of the input voltage, the output voltage will rise to a new regulated ratio output voltage or to 12V depending of the final value of the input voltage step. The hybrid regulated ratio prevents overshoots and undershoots in association with this transition. These capabilities significantly reduce the requirements on input transient response of Point of Load regulators fed from this product.

Parallel Operation
This product is not designed for paralleling without using external current sharing circuits. See Design Note 006 for detailed information.

Over Temperature Protection (OTP)
The products are protected from thermal overload by an internal over temperature shutdown circuit. When T_{P1} as defined in thermal consideration section exceeds 130°C the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped >10°C below the temperature threshold.

Over Voltage Protection (OVP)
The products have output over voltage protection that will shut down the product in over voltage conditions. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically after removal of the over voltage condition. The OVP setpoint can be found in the Electrical Specification.

Over Current Protection (OCP)
The products include current limiting circuitry for protection at continuous overload. The OCP works in a hiccup mode and will make continuous attempts to start up and will resume normal operation automatically after removal of the over current condition. The load distribution should be designed for the specified maximum output short circuit current.

Pre-bias Start-up
The product has a Pre-bias start up functionality and will not sink current during start up if a pre-bias load is present at the output terminals.
Thermal Consideration

General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PWB without a baseplate attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at \(V_I = 53 \) V.

The product is tested on a 254 x 254 mm, 35 µm (1 oz), 16-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.

Definition of product operating temperature
The temperature at the positions \(T_{P1}, T_{P2} \) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum measured at the reference point P1, P2 are not allowed and may cause permanent damage.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Mosfet, Reference point</td>
<td>(T_{P1} = 125^\circ C)</td>
</tr>
<tr>
<td>P2</td>
<td>Transformer core</td>
<td>(T_{P2} = 125^\circ C)</td>
</tr>
</tbody>
</table>

For products with baseplate used in a sealed box/cold wall application, cooling is achieved mainly by conduction through the cold wall. The Output Current Derating graphs are found in the Output section for each model. The product performance has been tested in a sealed box presented in the figure below. The ambient temperature (inside the box) has been set to 85°C. The cold wall temperature varied. See Design Note 028 for further details.
Ambient Temperature Calculation
For products with base plate the maximum allowed ambient temperature can be calculated by using the thermal resistance.

1. The power loss is calculated by using the formula
 \[\frac{1}{\eta} - 1 \times \text{output power} = \text{power losses (Pd)} \].
 \[\eta = \text{efficiency of product. E.g. } 95.5\% = 0.955 \]

2. Find the thermal resistance (Rth) in the Thermal Resistance graph found in the Output section for each model.
 Note that the thermal resistance can be significantly reduced if a heat sink is mounted on the top of the base plate.

Calculate the temperature increase (\(\Delta T \)).

\[\Delta T = Rth \times Pd \]

3. Max allowed ambient temperature is:
 \[\text{Max } T_{\text{P1}} - \Delta T \].

E.g. PKB4313D at 1m/s:

1. \[\left(\frac{1}{0.955} \right) - 1 \times 300 \text{ W} = 14.1 \text{ W} \]
2. \[14.1 \text{ W} \times 4.2^\circ\text{C/W} = 59^\circ\text{C} \]
3. \[125^\circ\text{C} - 59^\circ\text{C} = \text{max ambient temperature is } 66^\circ\text{C} \]

The actual temperature will be dependent on several factors such as the PWB size, number of layers and direction of airflow.
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Mechanical Information - Hole Mount, Open Frame Version

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Mechanical Information - Hole Mount, Base Plate Version

TOP VIEW
Pin positions according to recommended footprint

RECOMMENDED FOOTPRINT - TOP VIEW

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
PKB4000D series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 25 A / 300 W

Mechanical Information - Surface Mount Version

TOP VIEW
Pin positions according to recommended footprint

RECOMMENDED FOOTPRINT - TOP VIEW

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.
Soldering Information - Surface Mounting
The surface mount product is intended for forced convection or vapor phase reflow soldering in SnPb and Pb-free processes.

The reflow profile should be optimised to avoid excessive heating of the product. It is recommended to have a sufficiently extended preheat time to ensure an even temperature across the host PWB and it is also recommended to minimize the time in reflow.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board, since cleaning residues may affect long time reliability and isolation voltage.

General reflow process specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SnPb eutectic</th>
<th>Pb-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average ramp-up (T_{PRODUCT})</td>
<td>3°C/s max</td>
<td>3°C/s max</td>
</tr>
<tr>
<td>Typical solder melting (liquidus) temperature (T_l)</td>
<td>183°C</td>
<td>221°C</td>
</tr>
<tr>
<td>Minimum reflow time above T_l</td>
<td>60 s</td>
<td>60 s</td>
</tr>
<tr>
<td>Minimum pin temperature (T_{PIN})</td>
<td>210°C</td>
<td>235°C</td>
</tr>
<tr>
<td>Peak product temperature (T_{PRODUCT})</td>
<td>225°C</td>
<td>260°C</td>
</tr>
<tr>
<td>Average ramp-down (T_{PRODUCT})</td>
<td>6°C/s max</td>
<td>6°C/s max</td>
</tr>
<tr>
<td>Maximum time 25°C to peak</td>
<td>6 minutes</td>
<td>8 minutes</td>
</tr>
</tbody>
</table>

Minimum Pin Temperature Recommendations
Pin number 4 is chosen as reference location for the minimum pin temperature recommendation since this will likely be the coolest solder joint during the reflow process.

SnPb solder processes
For SnPb solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature, (T_l, 183°C for Sn63Pb37) for more than 60 seconds and a peak temperature of 220°C is recommended to ensure a reliable solder joint.

For dry packed products only: depending on the type of solder paste and flux system used on the host board, up to a recommended maximum temperature of 245°C could be used, if the products are kept in a controlled environment (dry pack handling and storage) prior to assembly.

Lead-free (Pb-free) solder processes
For Pb-free solder processes, a pin temperature (T_{PIN}) in excess of the solder melting temperature (T_l, 217 to 221°C for SnAgCu solder alloys) for more than 60 seconds and a peak temperature of 245°C on all solder joints is recommended to ensure a reliable solder joint.

Maximum Product Temperature Requirements
Top of the product PWB near pin 2 is chosen as reference location for the maximum (peak) allowed product temperature (T_{PRODUCT}) since this will likely be the warmest part of the product during the reflow process.

SnPb solder processes
For SnPb solder processes, the product is qualified for MSL 1 according to IPC/JEDEC standard J-STD-020C.

During reflow T_{PRODUCT} must not exceed 225 °C at any time.

Pb-free solder processes
For Pb-free solder processes, the product is qualified for MSL 3 according to IPC/JEDEC standard J-STD-020C.

During reflow T_{PRODUCT} must not exceed 260 °C at any time.

Dry Pack Information
Products intended for Pb-free reflow soldering processes are delivered in standard moisture barrier bags according to IPC/JEDEC standard J-STD-033 (Handling, packing, shipping and use of moisture/reflow sensitivity surface mount devices).

Using products in high temperature Pb-free soldering processes requires dry pack storage and handling. In case the products have been stored in an uncontrolled environment and no longer can be considered dry, the modules must be baked according to J-STD-033.

Thermocoupler Attachment
Top of PWB near pin 2 for measurement of maximum product temperature, T_{PRODUCT}

Pin 4 for measurement of minimum pin (solder joint) temperature, T_{PIN}
Soldering Information - Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.

A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information

The products are delivered in antistatic injection molded trays (Jedec design guide 4.10D standard) and in antistatic trays.

<table>
<thead>
<tr>
<th>Tray Specifications – SMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surface resistance</td>
</tr>
<tr>
<td>Bakability</td>
</tr>
<tr>
<td>Tray thickness</td>
</tr>
<tr>
<td>Box capacity</td>
</tr>
<tr>
<td>Tray weight</td>
</tr>
</tbody>
</table>

JEDEC standard tray for 2x10 = 20 products.
All dimensions in mm [inch]
Tolerances: X.x ±0.26 [0.01], X.xx ±0.13 [0.005]
Note: pick up positions refer to center of pocket.
See mechanical drawing for exact location on product.
Tray Specifications – Through hole version

<table>
<thead>
<tr>
<th>Material</th>
<th>PE Foam, dissipative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface resistance</td>
<td>$10^9 < \text{Ohm/square} < 10^{12}$</td>
</tr>
<tr>
<td>Bakability</td>
<td>The trays are not bakable</td>
</tr>
<tr>
<td>Tray thickness</td>
<td>22 mm [0.866 inch]</td>
</tr>
</tbody>
</table>
| Box capacity | 100 products (4 full trays/box) Open frame
 25 products (1 full tray/box) Base plate |
| Tray weight | Product – Open frame
 654 g full tray, 54 g empty tray
 Product – Base plate option
 1000 g full tray, 54 g empty tray |

Soft tray for open frame & base plate version
Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>External visual inspection</td>
<td>IPC-A-610</td>
</tr>
<tr>
<td>Change of temperature (Temperature cycling)</td>
<td>IEC 60068-2-14 Na, Temperature range 40 to 100°C, Number of cycles 1000, Dwell/transfer time 15 min/0-1 min</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 60068-2-1 Ad, Temperature T_A, Duration 45°C, 72 h</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-67 Cy, Temperature 85°C, Humidity 85 % RH, Duration 1000 hours</td>
</tr>
<tr>
<td>Dry heat</td>
<td>IEC 60068-2-2 Bd, Temperature 125°C, Duration 1000 h</td>
</tr>
<tr>
<td>Electrostatic discharge susceptibility</td>
<td>IEC 61340-3-1, JESD 22-A114, Human body model (HBM) Class 2, 2000 V, Machine Model (MM) Class 3, 200 V</td>
</tr>
<tr>
<td>Immersion in cleaning solvents</td>
<td>IEC 60068-2-45 XA, method 2, Water 55°C, Glycol ether 35°C, Isopropyl alcohol 35°C</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>IEC 60068-2-27 Ea, Peak acceleration 100 g, Duration 6 ms</td>
</tr>
<tr>
<td>Moisture reflow sensitivity ¹</td>
<td>J-STD-020C, Level 1 (SnPb-eutectic) 225°C, Level 3 (Pb Free) 260°C</td>
</tr>
<tr>
<td>Operational life test</td>
<td>MIL-STD-202G, method 108A, Duration 1000 h</td>
</tr>
<tr>
<td>Resistance to soldering heat ²</td>
<td>IEC 60068-2-20 Tb, method 1A, Solder temperature 270°C, Duration 10-13 s</td>
</tr>
<tr>
<td>Robustness of terminations</td>
<td>IEC 60068-2-21 Test Ua1, Through hole mount products, All leads</td>
</tr>
<tr>
<td>Solderability</td>
<td>IEC 60068-2-20 test Ta ², Preconditioning Temperature, SnPb Eutectic 150°C dry bake 16 h, Temperature, Pb-free 215°C</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-58 test Td ¹, Preconditioning Temperature, Pb-free 235°C</td>
</tr>
<tr>
<td>Vibration, broad band random</td>
<td>IEC 60068-2-64 Fh, method 1, Frequency 10 to 500 Hz, Spectral density 0.07 g/Hz, Duration 10 min in each direction</td>
</tr>
</tbody>
</table>

Notes

1. Only for products intended for reflow soldering (surface mount products)
2. Only for products intended for wave soldering (plated through hole products)