PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Key Features
- Industry standard Quarter-brick
 57.9 x 36.8 x 11.4 mm (2.28 x 1.45 x 0.45 inch)
- Telecom standard input range 36-75 Vin
- Deliver up to 580W maximum output power
- Fully tightly regulated output voltage
- High efficiency, typical 96 % at 50% load
- 2250V input to output functional isolation
- 1500V basic insulation
- Wide operating temperature range -30°C to 90°C
- Input overvoltage suppression
- Soft-start for handling of high capacitance loads
- More than 3.34 million hours MTBF

General Characteristics
- Optional baseplate
- Optional single output pins
- Hiccup OCP, OTP, OVP and under voltage lockout

Contents
Ordering Information ... 2
General Information ... 2
Safety Specification ... 3
Absolute Maximum Ratings ... 4

Electrical Specification
11.6 V, 50 A / 580 W PKM 4613ANH PI 5

EMC Specification ... 10
Operating Information ... 11
Thermal Consideration .. 14
Connections ... 16
Mechanical Information .. 17
Soldering Information ... 20
Delivery Information ... 20
Product Qualification Specification ... 21

Safety Approvals
Design for Environment
Meets requirements in high-temperature lead-free soldering processes.
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Ordering Information

<table>
<thead>
<tr>
<th>Product program</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKM 4613ANH PI</td>
<td>11.6 V @ 50 A</td>
</tr>
</tbody>
</table>

Product number and Packaging

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n1</td>
<td>Pi Through hole</td>
</tr>
<tr>
<td>n2</td>
<td>Open frame*</td>
</tr>
<tr>
<td>n3</td>
<td>HS Baseplate (height 13.8±0.5mm)</td>
</tr>
<tr>
<td>n4</td>
<td>Double power pins*</td>
</tr>
<tr>
<td>n5</td>
<td>SP Single power pin</td>
</tr>
<tr>
<td>n6</td>
<td>5.30 mm *</td>
</tr>
<tr>
<td>n7</td>
<td>LA 3.69 mm</td>
</tr>
<tr>
<td>n8</td>
<td>LB 4.57 mm</td>
</tr>
<tr>
<td>n9</td>
<td>/B Tray</td>
</tr>
</tbody>
</table>

For example, the through hole version product with baseplate, single power pin with short lead length is PKM4613ANHPIHSPLA.

* Standard variant (i.e. no option selected).

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF = $1/\lambda$) is calculated at max output power and an operating ambient temperature (T_a) of +40°C. Flex uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

<table>
<thead>
<tr>
<th>Mean steady-state failure rate, λ</th>
<th>Std. deviation, σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>299 nFailures/h</td>
<td>36 nFailures/h</td>
</tr>
</tbody>
</table>

MTBF (mean value) for the PKM-NH series = 3.34 Mh.
MTBF at 90% confidence level = 2.89 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

Warranty

Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability

Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

© Flex 2017

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
Safety Specification

General information

Flex Power DC/DC converters and DC/DC regulators are designed in accordance with the safety standards IEC 62368-1, EN 62368-1 and UL 62368-1 Audio/video, information and communication technology equipment - Part 1: Safety requirements

IEC/EN/UL 62368-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Electrically-caused fire
- Injury caused by hazardous substances
- Mechanically-caused injury
- Skin burn
- Radiation-caused injury

On-board DC/DC converters, Power interface modules and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without “conditions of acceptability”. Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use shall comply with the requirements in IEC/EN/UL 62368-1. Product related standards, e.g. IEEE 802.3af Power over Ethernet, and ETS-300132-2 Power interface at the input to telecom equipment, operated by direct current (dc) are based on IEC/EN/UL 60950-1 with regards to safety.

Flex Power DC/DC converters, Power interface modules and DC/DC regulators are UL 62368-1 recognized and certified in accordance with EN 62368-1. The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, Fire hazard testing, test flames – 50 W horizontal and vertical flame test methods.

Isolated DC/DC converters

The product may provide basic or functional insulation between input and output according to IEC/EN/UL 62368-1 (see Safety Certificate), different conditions shall be met if the output of a basic or a functional insulated product shall be considered as ES1 energy source.

For basic insulated products (see Safety Certificate) the output is considered as ES1 energy source if one of the following conditions is met:

- The input source provides supplementary or double or reinforced insulation from the AC mains according to IEC/EN/UL 62368-1.
- The input source provides functional or basic insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 62368-1.

For functional insulated products (see Safety Certificate) the output is considered as ES1 energy source if one of the following conditions is met:

- The input source provides double or reinforced insulation from the AC mains according to IEC/EN/UL 62368-1.
- The input source provides basic or supplementary insulation from the AC mains and the product’s output is reliably connected to protective earth according to IEC/EN/UL 62368-1.
- The input source is reliably connected to protective earth and provides basic or supplementary insulation according to IEC/EN/UL 62368-1 and the maximum input source voltage is 60 Vdc.

Galvanic isolation between input and output is verified in an electric strength test and the isolation voltage (Vdc) meets the voltage strength requirement for basic insulation according to IEC/EN/UL 62368-1.

It is recommended to use a slow blow fuse at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter. In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{P1} Operating Temperature (see Thermal Consideration section)</td>
<td>-40</td>
<td>+125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>T_{S} Storage temperature</td>
<td>-55</td>
<td>+125</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>V_{i} Input voltage</td>
<td>-0.5</td>
<td>+80</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>C_{out} Output capacitance</td>
<td></td>
<td></td>
<td>1000</td>
<td>µF</td>
</tr>
<tr>
<td>$C_{\text{out,ESR}}$ Output capacitance ESR</td>
<td></td>
<td></td>
<td>30</td>
<td>mOhm</td>
</tr>
<tr>
<td>V_{in} Isolation voltage (input to output qualification test voltage)</td>
<td></td>
<td></td>
<td>2250</td>
<td>Vdc</td>
</tr>
<tr>
<td>V_{inB} Isolation voltage (input to baseplate qualification test voltage)</td>
<td></td>
<td></td>
<td>1500</td>
<td>Vdc</td>
</tr>
<tr>
<td>V_{iso} Isolation voltage (baseplate to output qualification test voltage)</td>
<td></td>
<td></td>
<td>750</td>
<td>Vdc</td>
</tr>
<tr>
<td>V_{RC} Input voltage transient, according to ETSI EN 300 132-2 and Telcordia GR-1089-CORE</td>
<td></td>
<td></td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>V_{RC} Remote Control pin voltage</td>
<td>Positive logic option</td>
<td>-0.5</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Negative logic option</td>
<td>-0.5</td>
<td>6</td>
<td>V</td>
</tr>
</tbody>
</table>

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits in the Electrical Specification. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Note 1: This is an absolute minimum value, the output capacitance must be at least 1000 µF. The module is designed to operate with a minimum output capacitance. Operation with lower capacitance than the one specified can lead to damage of the module.

Fundamental Circuit Diagram

![Fundamental Circuit Diagram](image)
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Electrical Specification
11.6 V, 50 A / 580 W

T_P1 = -30 to +90°C, V_I = 38.5 to 75 V, unless otherwise specified under Conditions.
Typical values given at: T_P1 = +25°C, V_I = 53 V, max I_O, unless otherwise specified under Conditions.
Additional C_o = 470 µF, C_i = 2820 µF, ceramic capacitors. See Operating Information section for selection of capacitor types.

PKM 4613ANH PI

Note 2: 10x47µF + 83x10µF + 30x22µF ceramic, 2x47µF POS-CAP and 16x270µF polymer capacitors on the output.

Note 3: See graph "Maximum Output Capacitance vs Input Voltage"

Note 4: ESR is highly temperature dependent for some types of capacitors e.g. aluminum electrolyte capacitors will freeze in cold environment.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_I</td>
<td>Input voltage range</td>
<td>36</td>
<td>75</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_off</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>29</td>
<td>33</td>
<td>V</td>
</tr>
<tr>
<td>V_on</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>32</td>
<td>36</td>
<td>V</td>
</tr>
<tr>
<td>C_I</td>
<td>Internal input capacitance</td>
<td>V_I = 53 V</td>
<td>15</td>
<td>µF</td>
<td></td>
</tr>
<tr>
<td>P_O</td>
<td>Output power</td>
<td>0</td>
<td>580</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_O</td>
<td>96.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_O</td>
<td>96.1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% of max I_O, V_I = 48 V</td>
<td>96.4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_O, V_I = 48 V</td>
<td>96.2</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>P_I</td>
<td>Power Dissipation</td>
<td>max I_O</td>
<td>23.3</td>
<td>32</td>
<td>W</td>
</tr>
<tr>
<td>P_I0</td>
<td>Input idling power</td>
<td>I_O = 0 A, V_I = 53 V</td>
<td>5.9</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>P_RC</td>
<td>Input standby power</td>
<td>V_I = 53 V (turned off with RC)</td>
<td>0.3</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency (Ripple f_s)</td>
<td>0-100 % of max I_O</td>
<td>375</td>
<td>400</td>
<td>425</td>
</tr>
<tr>
<td>V_Gs</td>
<td>Output voltage initial setting</td>
<td>T_P1 = +25°C, V_I = 53 V, I_O = 50 A</td>
<td>11.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output voltage tolerance band</td>
<td>0-100% of max I_O, V_I = 38.5-75V</td>
<td>11.4</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-100% of max I_O, V_I = 36-75V</td>
<td>10.6</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Idling voltage</td>
<td>I_O = 0 A</td>
<td>11.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Line regulation</td>
<td>max I_O</td>
<td>15</td>
<td>50</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>Load regulation</td>
<td>V_I = 53 V, 0-100% of max I_O</td>
<td>3</td>
<td>15</td>
<td>mV</td>
</tr>
<tr>
<td>V_tr</td>
<td>Load transient voltage deviation</td>
<td>V_I = 53 V, Load step 25-75-25% of max I_O, di/dt = 1 A/µs, See Note 2</td>
<td>±110</td>
<td>200</td>
<td>mV</td>
</tr>
<tr>
<td>t_tr</td>
<td>Load transient recovery time</td>
<td>0</td>
<td>50</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>t_R</td>
<td>Ramp-up time (from 10-90% of V_Gs)</td>
<td>0-100% of max I_O</td>
<td>4</td>
<td>10</td>
<td>ms</td>
</tr>
<tr>
<td>t_S</td>
<td>Start-up time (from V_I connection to 90% of V_Gs)</td>
<td>6</td>
<td>12</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>t_F</td>
<td>V_I shut-down fall time (from V_I off to 10% of V_Gs)</td>
<td>max I_O</td>
<td>1.3</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_O = 0 A</td>
<td>200</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>t_RC</td>
<td>RC start-up time (from RC off to 10% of V_Gs)</td>
<td>max I_O</td>
<td>5</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RC shut-down fall time</td>
<td>max I_O</td>
<td>1.6</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_O = 0 A</td>
<td>200</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>I_O</td>
<td>Output current</td>
<td>0</td>
<td>50</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_lm</td>
<td>Current limit threshold</td>
<td>T_P1 < max T_P1</td>
<td>65</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_SC</td>
<td>Short circuit current</td>
<td>T_P1 = 25°C</td>
<td>7</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>C_OUT</td>
<td>Recommended Capacitive Load, See Note 3</td>
<td>T_P1 = -30°C - +90 °C</td>
<td>2900</td>
<td>15000</td>
<td>µF</td>
</tr>
<tr>
<td>ESR</td>
<td>Recommended ESR, See Note 4</td>
<td></td>
<td>30</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>V_OC</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, V_Gs</td>
<td>170</td>
<td>350</td>
<td>mVP-p</td>
</tr>
<tr>
<td>OVP</td>
<td>Input Overvoltage Protection</td>
<td>0-100% of max I_O</td>
<td>100</td>
<td>105</td>
<td>V</td>
</tr>
<tr>
<td>OVP</td>
<td>Over voltage protection</td>
<td></td>
<td>14.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_RC</td>
<td>Sink current</td>
<td>See operating information</td>
<td>0.5</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trigger level</td>
<td>See operating information</td>
<td>1</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Response time</td>
<td></td>
<td>0.1</td>
<td>0.5</td>
<td>ms</td>
</tr>
</tbody>
</table>

Note 2: 10x47µF + 83x10µF + 30x22µF ceramic, 2x47µF POS-CAP and 16x270µF polymer capacitors on the output.

Note 3: See graph "Maximum Output Capacitance vs Input Voltage"

Note 4: ESR is highly temperature dependent for some types of capacitors e.g. aluminum electrolyte capacitors will freeze in cold environment.
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Output Characteristics

![Output voltage graph](image)

Output voltage vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Current Limit Characteristics

![Current limit graph](image)

Output voltage vs. load current at $I_0 > I_{L0}$, $T_{P1} = +25^\circ C$.

Maximum Output Capacitance vs Input Voltage

![Capacitance graph](image)

Maximum output capacitance vs Input Voltage $T_{P1} = +25^\circ C$.

Power Dissipation

![Power dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{P1} = +25^\circ C$.

Maximum start-up current vs. Output capacitance

![Start-up current graph](image)

Maximum start-up current vs output capacitance with resistive load at $T_{P1} = +25^\circ C$.
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Typical Characteristics
11.6 V, 50 A / 580 W

Start-up

- Start-up enabled by connecting V_I at:
 - $T_{P1}=+25^\circ C$, $V_I=53$ V,
 - $I_O=50$ A resistive load.

Shutdown

- Shut-down enabled by disconnecting V_I at:
 - $T_{P1}=+25^\circ C$, $V_I=53$ V,
 - $I_O=50$ A resistive load.

Output Ripple & Noise

- Output voltage ripple at:
 - $T_{P1}=+25^\circ C$, $V_I=53$ V, $C_{out}=2.82$ mF
 - $I_O=50$ A resistive load.

Output Load Transient Response

- Output voltage response to load current step-change (12.5-37.5-12.5 A) at:
 - $T_{P1}=+25^\circ C$, $V_I=53$ V, $C_{out}=5.94$ mF

PKM 4613ANH PI

© Flex
Typical Characteristics

11.6 V, 50 A / 580 W

PKM4000NH series

Fully regulated DC-DC Converters

Input 36-75 V, Output up to 50 A / 580 W

PKM4613ANH PI

Output Power Derating – Single pin and base plate

(PKM4613 ANH PI HS SP)

![Graph showing output power derating](image)

Available power vs. ambient air temperature and airflow at $V_{i} = 53$ V. See Thermal Consideration section.

Thermal Resistance – Single pin and base plate

(PKM4613 ANH PI HS SP)

![Graph showing thermal resistance](image)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_{i} = 53$ V.

Output Power Derating – Dual pin open frame

(PKM4613 ANH PI)

![Graph showing output power derating](image)

Available power vs. ambient air temperature and airflow at $V_{i} = 53$ V. See Thermal Consideration section.

Thermal Resistance – Dual pin open frame

(PKM4613 ANH PI)

![Graph showing thermal resistance](image)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_{i} = 53$ V.

Output Power Derating – Dual pin and base plate

(PKM4613 ANH PI)

![Graph showing output power derating](image)

Available power vs. ambient air temperature and airflow at $V_{i} = 53$ V. See Thermal Consideration section.

Thermal Resistance – Dual pin and base plate

(PKM4613 ANH PI)

![Graph showing thermal resistance](image)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal consideration section. $V_{i} = 53$ V.
Output Power Derating – Dual pin, baseplate and ½” heat sink (PKM4613 ANH PI)

Available power vs. ambient air temperature and airflow at $V_i = 53 \text{ V}$. See Thermal Consideration section.

Thermal Resistance – Dual pin, baseplate and ½” heat sink (PKM4613 ANH PI)

Thermal resistance vs. airspeed measured at the converter. Tested in wind tunnel with airflow and test conditions as per the Thermal Consideration section. $V_i = 53 \text{ V}$.
EMC Specification
Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental ripple frequency is 400 kHz at \(V_I = 53 \) V and max \(I_O \).

Conducted EMI Input terminal value (typ)

![EMI graph](image)

EMI without filter

Optional external filter for class B
Suggested external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

![Filter components diagram](image)

Filter components:
- \(C1, C2 = 5 \) μF
- \(C3 = 15 \) μF 100V; KRM55WR72A156MH01K (Murata)
- \(C6 = 470 \) μF 100 V; UPJ2A471MHD (Nichicon)
- \(C4, C5 = 20 \) nF, 1500V
- \(L1, L2 = 0.47 \) mH

Test set-up

Layout recommendations
The radiated EMI performance of the product will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to the output of the product and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.
Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.

The products are fitted with a remote control function referenced to the primary negative input connection (-In), with negative and positive logic options available. The RC function allows the product to be turned on/off by an external device like a semiconductor, or a mechanical switch placed close to the product. The RC pin has an internal pull up resistor of 10 kΩ to +5 V. The threshold level has a hysteresis and the function is designed to be robust to noise.

The external device must provide a minimum required sink current to guarantee a voltage not higher than the maximum voltage on the RC pin (see Electrical characteristics table). When the RC pin is left open, the voltage generated on the RC pin is 5 V.

The standard product is provided with “negative logic” RC and will be off until the RC pin is connected to -In. To turn off the product the RC pin should be left open. To power up the product automatically, without the need for control signals or a switch, the RC pin can be wired directly to -In.

The second option is “positive logic” RC, which can be ordered by adding the suffix “P” to the end of the part number. When the RC pin is left open, the product starts up automatically when the input voltage is applied. Turn off is achieved by connecting the RC pin to -In. The product will restart automatically when this connection is opened.

The RC function incorporates a short delay in order to not trigger on glitches. Typically this filter has a settling time of 0.1-0.5 ms. This setup significantly reduces the risk for noise causing the converter to shutdown or power up accidently.

See Design Note 021 for detailed information.

Input and Output Impedance

Recommended de-coupling setup

C1 = 470 µF 100 V; UP22A71MH from Nichicon or similar.
C2 = 15 µF 100 V; KRM59W72A156MH01K from Murata or similar close to the pins.
C11,C13 = 40x10 µF GRM31CR71C106KA12 from Murata or similar close to the pins.
C12,C14 = 8x270 16SVPF270M from Panasonic or similar.

The components used in the recommended de-coupling setup are typical components and could be replaced with components from different manufacturers with similar characteristics. The ceramic capacitors will handle high frequency noise from...
switching and the polymer will secure de-coupling capacitance if \(T_{\text{amb}} < -10^\circ \text{C} \).

The impedance of both the input source and the load will interact with the impedance of the product.

The output filter of the application board must be designed to meet the criteria of both ESR and capacitance for all \(T_{\text{amb}} \) temperatures. This means that it may not be sufficient to mount a capacitor rated within the tolerances of minimum capacitance and ESR limits if these values derate due to temperature.

Input Decoupling Capacitors

It is important that the input source has low characteristic impedance over the \(T_{\text{amb}} \) temperature range otherwise input ringings may occur at start-up or at a high load current surge due to negative resistance. Minimum external capacitance for the input is 470 \(\mu \text{F} \). Modern stacked ceramics provide high capacitance with low ESR over a wide range of temperatures and might be considered.

The input capacitor value may need to be substantially larger than specified minimum capacitance, if the ESR of the impedance increase, to maintain a stable input at low temperatures.

Recommended input capacitors connected in parallel as follows:

- 470 \(\mu \text{F} \) 100 V; UPJ2A471MHD from Nichicon or similar.
- 15 \(\mu \text{F} \) 100 V stacked ceramics; KRM5WR72A156MH01K from Murata or similar.

Output Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors close to the load. The most effective technique is to locate very low ESR capacitances as close to the load as possible and, if needed, the bulk of capacitance with low ESR close to the converter output.

Ceramic type of capacitor have also very low ESR and they are cheap in comparison to polymers. Drawbacks are derating due to bias voltage and temperature.

The recommended type of capacitance to place near the converter output connections is a low ESR aluminium polymer in parallel with a ceramic capacitor according to the picture under "Input and Output Impedance". It is recommended that this type of capacitance is used as bulk in high capacitive load application. The aluminium electrolyte works well with the converter but it is important to choose proper temperature classification as this has impact on the expected life span. Cold conditions have great impact on ESR value for the aluminium electrolyte; if cold environment is expected this must be considered and a component with ESR rated for low temperatures is preferred to secure performance.

The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. It is equally important to use low resistance and low inductance PCB layouts and cabling.

External decoupling capacitors will become part of the product’s control loop. The control loop is optimized for a wide range of external capacitance and the maximum recommended value that could be used without any additional analysis is found in the Electrical Specification.

The end user must secure that the used capacitance is within specified limits described under External Decoupling Capacitors for all ambient temperatures as this highly impact ESR performance and capacitance.

For further information please contact your local Flex Power Modules representative.

Parallel Operation, without Droop Load Share function

Two or more products may be paralleled for redundancy if the total power is less than \((n-1)^*P_o\) max. External current sharing circuits must be used.

See Design Note 006 for detailed information.

Over Temperature Protection (OTP)

The products are protected from thermal overload by an internal over temperature shutdown circuit. When \(T_{\text{F1}} \) as defined in thermal consideration section exceeds 140\(^\circ\)C the product will shut down. The product will make continuous attempts to start (non-latching mode) and resumes normal operation when the temperature has dropped >10\(^\circ\)C below the temperature threshold.

Over Voltage Protection (OVP)

The products have output over voltage protection that will shut down the product in over voltage conditions. The product will resume normal operation automatically after removal of the over voltage condition. The OVP setpoint can be found in the Electrical Specification.

The input over voltage protection will stop the switching when the converter reaches the input voltage specified in the Electrical Specification. The converter will resume normal operation when \(V_{\text{in}} \) drop below the voltage specified in the Electrical Specification.

Over Current Protection (OCP)

The products include current limiting circuitry for protection at continuous overload. It is made up of one real-time (peak) current monitor that constitutes a power limiter and another part which detects longer overloads and enters a delayed hiccup. At output currents in excess of maximum output current (max Io) the output voltage decrease towards zero and the current increase. If the overload persist the converter will after ~1.6 ms enter hiccup, disable the output and then make continuous restart attempts after a first timeout period, creating a delayed hiccup. The delay is set to a significantly longer time than the activation time (~200:1) in order to create low rms-currents in a fault condition. The timer and OCP setpoint are set in such a way that they do not trigger on capacitive load during start-up,
or cut-in during input voltage transients. The product will resume normal operation after removal of the overload. The load distribution should be designed for the maximum output OCP current specified in the Electrical Specification.

Pre-bias Start-up
The product has a Pre-bias start up functionality and will not sink current during start up if a Pre-bias source is present at the output terminals.

At shutdown, OVP or OTP, the product will directly shut off the synchronous rectification to avoid reverse current. The product will not start-up if the output voltage is higher than the OVP-level specified in the Electrical Specification.

Soft Start
The soft start function ramps up the output voltage. The main purpose is to control the charging current to the external output capacitors. The ramp-up is however pretty fast so there is a significant inrush current at the maximum capacitive load. The inrush current could lower the input rail, if the input impedance is too high. See the Input and Output impedance section. If the input voltage drops below 31 V the converter stops and makes new start-attempts when the input voltage returns to 34 V.

Boosted hold-up applications
These products support hold up solutions with boosted hold-up capacitors that is hot-swapped to the input voltage rail at power-off of the original feed. Flex offers Power Input Modules, e.g. PIM 4820B and PIM4328PD with such functionality.

The smaller the input capacitor the higher the hot insertion point for the boosted capacitor should be. Use the range as close to the maximum input voltage, 75 V, as possible. A proper setting will result in a smooth output voltage without overshoot. If a glitch is acceptable, it should be kept below the OVP activation level, typically 15 V.

PIM modules from Flex Power Modules shall be set to their highest set point, 44 V, and the boost level shall be adjusted to reach to 75 V in the application. I.e. the level needs to be adjusted to more than 72 V, approximately to 75 V. Consult the technical specification for the PIM-product regarding PIM-setting possibilities and features.

For further information please contact your local Flex Power Modules representative.

Isolation
The open frame products have 2250 V input to output functional isolation. Leaving the baseplate free-floating means that the 2250 V input to output isolation voltage is kept. Steady-state the voltage across the isolation barrier is not higher than the input voltage, maximum 75 V, and the output voltage together.
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

In order to keep the 2250 V functional isolation voltage between the product and the host board the keep away areas for components and traces must be followed according to the Mechanical Information section or the clearance must be increased to at least 1.5 mm or insulated with approved isolation material according to the desired isolation voltage level. The minimum stand-off is 0.5 mm and the corresponding functional isolation voltage is 1500 V. See the Mechanical Information section for more information.

Basic isolation of 1500V according to IEC/EN/UL 60950/1 is provided.

Baseplate grounding
Variants with baseplate have the baseplate floating. The baseplate can be grounded externally via the threaded holes in the baseplate. In the latter case the isolation voltage is reduced and qualified values are stated in the Absolute Maximum Ratings.

Possibility to order variants with the baseplate grounded either to +In or –Out might be added to the program.

Thermal Consideration

General
The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.
For products mounted on a PCB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Power Derating graph found in the Typical Characteristics section for each model provides the available output power vs. ambient air temperature and air velocity at 53 V。

To enhance the thermal transfer the products are available with a baseplate as well as dual output pins. The products respond well on cooling methods due to its low internal thermal resistance.

Convection cooling
The products power density is up to 405 W/cubic inch leaving a limited area for convection cooling and the heat generated is significant at high load. Just air flow is not sufficient for the product to deliver full power at high ambient temperatures.
In the section Typical characteristics, Output Power derating – Different cooling, the benefits of base plate and heat sink is clearly visualized. The absolute best performance can be obtained by using the highest heat sink possible that allows the most air to be forced through and thereby increase cooling.

Conduction cooling
The thermal design is made to ease the transfer of heat from the product via both the input and the output power pins. The optional baseplate can be connected to a cold wall. See the Typical Characteristics section for graphs.

Dual output pins

As well as decreasing the power losses in the pins, dual pins will spread both the current and the heat better on the host board reducing the stress on the solder joints. For backward compatibility and designs using less than 500 W output power the single pin products can be used with up to 5 °C worse derating.

See Typical Characteristics section for more details.

Layout considerations
Recommended host board footprint and plated through hole dimensions are defined by best practices to combine low resistance current/power distribution, standard mounting assembly techniques and relevant tolerances. When deviations in e.g. through plated hole sizes are applicable by end user, alternative techniques as wash away spacers, tailored fixtures or gap pads can be used by manufacturers to secure product form factor and functionality.

Inappropriate assembly techniques can stress the interconnection leads of the module and reduce the thermal coupling between e.g. the module's base plate and cold wall.

Special attention should be paid to the current distribution flow within the host board by appropriate amount of copper layers/ traces/interconnecting vias.

If the pins are connected to a plane in the host board this will become an efficient heat sink and significantly increase the maximum power before maximum temperature is reached. The outer layer on the host board should have a large number of vias close to the outside of the pins' shoulders in order to improve current and heat spreading between the host board and the product. The current and heat bottleneck is often close to the pin and it might be good to use extra PCB layers to connect to the pin and let the vias around the standoff spread the power to the power planes. For further information please contact your local Flex Power Modules representative.

Baseplate
The baseplate itself improves the performance by smoothening out the local hotspots on the converter. The other advantage is that it is an efficient way to dissipate heat from the product. Connected to a heatsink or a coldwall higher power can be delivered at high ambient temperatures. This also opens up for the use of advanced cooling technologies such as heatpipes or liquid cooling. See the Typical Characteristics section for graphs on different cooling and pinning options.
The product is tested on a 254 x 254 mm, 35 µm (1 oz), 16-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.

For products with base plate used in a sealed box/cold wall application, cooling is achieved mainly by conduction through the cold wall. The Output Current Derating graphs are found in the Output section for each model. The product is tested in a sealed box test set up with ambient temperatures 85°C at different output power conditions. See Design Note 028 for further details.

Definition of product operating temperature

Proper operational conditions are verified by measuring the temperature at positions P1, P2, P3 and P4. The temperature at these positions (TP1, TP2, TP3, TP4) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum TP1, TP2, TP3 and TP4, measured at the reference points P1, P2, P3 and P4 are not allowed and may cause permanent damage.

<table>
<thead>
<tr>
<th>Position</th>
<th>Description</th>
<th>Max Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Pcb prim</td>
<td>TP1=125°C</td>
</tr>
<tr>
<td>P2</td>
<td>M300</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>T203</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>N305</td>
<td></td>
</tr>
</tbody>
</table>

Ambient Temperature Calculation

For products with baseplate the maximum allowed ambient temperature can be calculated by using the thermal resistance.

1. The power loss is calculated by using the formula

 \[
 \left(\frac{1}{\eta} - 1\right) \times \text{output power} = \text{power losses} (P_d)
 \]

 \[\eta = \text{efficiency of product, e.g. 96.4\%} = 0.964\]

2. Find the thermal resistance (Rth) in the Thermal Resistance graph found in the Output section for each model. **Note that the thermal resistance can be significantly reduced if a heat sink is mounted on the top of the base plate.**

Calculate the temperature increase (\(\Delta T\)).

\[\Delta T = R_{th} \times P_d\]

3. Max allowed ambient temperature is:

 Max TP1 - \(\Delta T\).
E.g. PKM 4717NH PI, open frame at 1m/s:

1. \(\left(\frac{1}{0.964} - 1 \right) \times 756 \text{W} = 28.2 \text{W} \)

2. \(28.2 \text{W} \times 2.9 \degree \text{C/W} = 81.8 \degree \text{C} \)

3. \(125 \degree \text{C} - 81.8 \degree \text{C} = \text{max ambient temperature is 43.2} \degree \text{C} \)

4. The thermal performance can be significantly improved by mounting a heat sink on top of the base plate.

The thermal resistance between base plate and heat sink, \(R_{th, b-h} \) is calculated as:

\[
R_{th, b-h} = \frac{T_{base\ plate} - T_{heat\ sink}}{R_{th}}
\]

The actual temperature will be dependent on several factors such as the PCB size, number of layers and direction of airflow.

Connections
The picture shows the bottom view of the module.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+In</td>
<td>Positive Input</td>
</tr>
<tr>
<td>2</td>
<td>RC</td>
<td>Remote Control</td>
</tr>
<tr>
<td>3</td>
<td>-In</td>
<td>Negative Input</td>
</tr>
<tr>
<td>4</td>
<td>+Out</td>
<td>Positive Output</td>
</tr>
<tr>
<td>5</td>
<td>-Out</td>
<td>Negative Output</td>
</tr>
<tr>
<td>9</td>
<td>+Out</td>
<td>Positive output</td>
</tr>
<tr>
<td>10</td>
<td>-Out</td>
<td>Negative output</td>
</tr>
</tbody>
</table>

Optionally pins 4 and 10 can be omitted but for thermal reasons and optimal current distribution this is not recommended. See Typical Characteristics for thermal information.
Mechanical Information - Hole Mount, Open Frame Version

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product’s life cycle, unless explicitly described and dimensioned in this drawing.

PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

<table>
<thead>
<tr>
<th>Pin options</th>
<th>Standard Single/Dual pin out</th>
<th>Wide shoulder Single pin out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pins 1, 3</td>
<td>3.2 (0.125)</td>
<td>3.2 (0.125)</td>
</tr>
<tr>
<td>Pins 5, 9</td>
<td>3.2 (0.125)</td>
<td>3.05 (0.12)</td>
</tr>
<tr>
<td>Pins 4, 10</td>
<td>3.25 (0.125)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Lead length</th>
<th>Standard</th>
<th>LA</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.33 (0.13)</td>
<td>3.69 (0.15)</td>
<td>4.57 (0.18)</td>
</tr>
</tbody>
</table>

Table 1

Pins
Pin 1, 3, 4, 5, 9 & 10 Material Copper alloy
Pin 2 Material Brass alloy
Pin positions 4 & 10 are optional
Pitch Pitch: Min: 4.02 µm over 1.5 µm

Note 1: Recommended keep away area for user components to withstand input to output isolation voltage according to absolute maximum ratings.
Footprint
Single pin out - Pins 4 & 10 not used
Dual pin out - Pin 4 & 10 used
Recommended hole dimensions are only for reference. It is end users’ decision based on different situations like productions process, substrate thickness, etc.

Weight: Typical: 54 g
All dimensions in mm (Inch).
Tolerances unless specified
± 0.02 mm (0.001) ± 0.25 mm (0.01)
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Mechanical Information- Hole Mount, Base Plate Version

Pin positions according to recommended footprint

RECOMMENDED FOOTPRINT - TOP VIEW

Note 1: Threaded hole M3x0.5 (2x1)

Pin options

| Standard | Single | Single
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min 4.3</td>
<td>4.75</td>
<td>2.95</td>
</tr>
<tr>
<td>Max 5.6</td>
<td>5.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Table 3

Pin positions 4 & 10 are optional

Footprint

Single pin out - Pins 4 & 10 not used
Dual pin out - Pins 4 & 10 used

Recommended hole dimensions are only for reference, tolerances are based on different situations like production process, substrate thickness, etc.

Weights: Typical 81 g
PKM4000NH series Fully regulated DC-DC Converters
Input 36-75 V, Output up to 50 A / 580 W

Mechanical Information - Layout information

Top view - Layout restrictions

Keep away area criteria:
12 mm [0.47"] safety clearance between input and output circuitry acc. to EC 60950-1 225V.
Assembly tolerances are included.

Note 1: Capacitors
Recommended keep away area for open vias/traces connected to output circuitry to withstand input to output isolation voltage according to absolute maximum ratings.

Note 2: Ferrite cores
Recommended keep away area for open vias/traces connected to input circuitry to withstand input to output isolation voltage according to absolute maximum ratings.

Note 3: Outline according to recommended footprint.

All dimensions in mm [inches].
Tolerances unless specified
xx mm ±0.5 mm [0.02"] xxx mm ±0.25 mm [0.01”]
Int not applied on footprint or typical values

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.
Soldering Information - Hole Mounting
The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.

A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery Package Information
The products are delivered in antistatic trays.

<table>
<thead>
<tr>
<th>Tray Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Antistatic PE Foam</td>
</tr>
<tr>
<td>Surface resistance</td>
<td>$10^5 < \text{Ohm/square} < 10^{12}$</td>
</tr>
<tr>
<td>Bakability</td>
<td>The trays are not bakable</td>
</tr>
<tr>
<td>Box capacity</td>
<td>20 products (1 full tray/box)</td>
</tr>
<tr>
<td>Tray weight</td>
<td>Product – Open Frame Version 140 g empty, 1220 g full tray</td>
</tr>
<tr>
<td></td>
<td>Product – Base Plate Version 140 g empty, 1760 g full tray</td>
</tr>
</tbody>
</table>
Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Test Method</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>External visual inspection</td>
<td>IPC-A-610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change of temperature (Temperature cycling)</td>
<td>IEC 60068-2-14 Na</td>
<td>Temperature range</td>
<td>-40 to 100°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of cycles</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dwell/transfer time</td>
<td>15 min/0-1 min</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 60068-2-1 Ad</td>
<td>Temperature T_A</td>
<td>-45°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>72 h</td>
</tr>
<tr>
<td>Damp heat</td>
<td>IEC 60068-2-67 Cy</td>
<td>Temperature</td>
<td>85°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity</td>
<td>85 % RH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>1000 hours</td>
</tr>
<tr>
<td>Dry heat</td>
<td>IEC 60068-2-2 Bd</td>
<td>Temperature</td>
<td>125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>1000 h</td>
</tr>
<tr>
<td>Electrostatic discharge susceptibility</td>
<td>IEC 61340-3-1, JESD 22-A114</td>
<td>Human body model (HBM)</td>
<td>Class 2, 2000 V</td>
</tr>
<tr>
<td></td>
<td>IEC 61340-3-2, JESD 22-A115</td>
<td>Machine Model (MM)</td>
<td>Class 3, 200 V</td>
</tr>
<tr>
<td>Immersion in cleaning solvents</td>
<td>IEC 60068-2-45 XA, method 2</td>
<td>Water</td>
<td>55°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glycol ether</td>
<td>35°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isopropyl alcohol</td>
<td>35°C</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>IEC 60068-2-27 Ea</td>
<td>Peak acceleration</td>
<td>100 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>6 ms</td>
</tr>
<tr>
<td>Moisture reflow sensitivity</td>
<td>J-STD-020C</td>
<td>Level 1 (SnPb-eutectic)</td>
<td>225°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level 3 (Pb Free)</td>
<td>260°C</td>
</tr>
<tr>
<td>Operational life test</td>
<td>MIL-STD-202G, method 108A</td>
<td>Duration</td>
<td>1000 h</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td>IEC 60068-2-20 Tb, method 1A</td>
<td>Solder temperature</td>
<td>270°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>10-13 s</td>
</tr>
<tr>
<td>Robustness of terminations</td>
<td>IEC 60068-2-21 Test Ua1</td>
<td>Through hole mount products</td>
<td>All leads</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-21 Test Ue1</td>
<td>Surface mount products</td>
<td>All leads</td>
</tr>
<tr>
<td>Solderability</td>
<td>IEC 60068-2-58 test Td ¹</td>
<td>Preconditioning Temperature, SnPb Eutectic</td>
<td>150°C dry bake 16 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature, Pb-free</td>
<td>215°C</td>
</tr>
<tr>
<td></td>
<td>IEC 60068-2-20 test Ta ²</td>
<td>Preconditioning Temperature, SnPb Eutectic</td>
<td>235°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature, Pb-free</td>
<td>Steam ageing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>235°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>245°C</td>
</tr>
<tr>
<td>Vibration, broad band random</td>
<td>IEC 60068-2-64 Fh, method 1</td>
<td>Frequency</td>
<td>10 to 500 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spectral density</td>
<td>0.07 g²/Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duration</td>
<td>10 min in each direction</td>
</tr>
</tbody>
</table>

Notes:

¹ Only for products intended for reflow soldering (surface mount products)

² Only for products intended for wave soldering (plated through hole products)