Key Features
- 6A output current
- 2.95-3.65V input voltage range
- Output voltages from 0.8V up to 2.5V
- Industry standard POLA™ compatible
- 22.1 x 12.57 x 8.51 mm (0.87 x 0.5 x 0.335 in.)
- High efficiency, up to 94%
- Auto Track™ sequencing pin
- More than 4.5 million hours MTBF

General Characteristics
- Operating temperature: -40ºC to 85ºC
- Input under voltage protection
- Start up into a pre-biased output safe
- Output short-circuit protection
- On/Off inhibit control
- Wide output voltage adjust function
- Highly automated manufacturing ensures quality
- ISO 9001/14001 certified supplier

Contents
General Information ... 2
Safety Specification ... 3
Absolute Maximum Ratings ... 4

Product Program Ordering No.
0.8-2.5 V/6 A PME 4118T .. 5
1.0 V/6 A Electrical Specification ... 8
1.2 V/6 A Electrical Specification ... 11
1.5 V/6 A Electrical Specification ... 14
1.8 V/6 A Electrical Specification ... 17
2.5 V/6 A Electrical Specification ... 20

EMC Specification ... 20
Operating Information ... 20
Thermal Consideration ... 22
Connections ... 23
Mechanical Information ... 24
Soldering Information ... 26
Delivery Information ... 28
Product Qualification Specification ... 29
General Information

Ordering Information
See Contents for individual product ordering numbers.

<table>
<thead>
<tr>
<th>Option</th>
<th>Suffix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through hole pin</td>
<td>P</td>
</tr>
<tr>
<td>SMD pin, leadfree reflow</td>
<td>SR</td>
</tr>
<tr>
<td>temperature capable</td>
<td></td>
</tr>
</tbody>
</table>

Reliability
The Mean Time Between Failure (MTBF) is calculated at full output power and an operating ambient temperature (T_A) of +40°C. Different methods could be used to calculate the predicted MTBF and failure rate which may give different results. Flex currently uses Telcordia SR332.

- Predicted MTBF for the series is:
- 4.49 million hours according to Telcordia SR332, issue 1, Black box technique.

Telcordia SR332 is a commonly used standard method intended for reliability calculations in IT&T equipment. The parts count procedure used in this method was originally modelled on the methods from MIL-HDBK-217F, Reliability Predictions of Electronic Equipment. It assumes that no reliability data is available on the actual units and devices for which the predictions are to be made, i.e. all predictions are based on generic reliability parameters.

Compatibility with RoHS requirements
The products are compatible with the relevant clauses and requirements of the RoHS directive 2011/65/EU and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Flex products are found in the Statement of Compliance document.

Flex fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement
The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, 6σ (sigma), and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

Warranty
Warranty period and conditions are defined in Flex General Terms and Conditions of Sale.

Limitation of Liability
Flex does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person’s health or life).

© Flex 2017
The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Flex reserves the right to change the contents of this technical specification at any time without prior notice.
Safety Specification

General information
Flex DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL60950, Safety of Information Technology Equipment. IEC/EN/UL60950 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC-DC converters are defined as component power supplies. As components they cannot fully comply with the provisions of any Safety requirements without “Conditions of Acceptability”. It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable Safety standards and Directives for the final product.

Component power supplies for general use should comply with the requirements in IEC60950, EN60950 and UL60950 “Safety of information technology equipment”.

There are other more product related standards, e.g. IEEE802.3af “Ethernet LAN/MAN Data terminal equipment power”, and EN50082-1 "Power supply interface at the point of application". All of these standards are based on IEC/EN/UL60950 with regards to safety.

Flex DC/DC converters and DC/DC regulators are UL60950 recognized and certified in accordance with EN60950.

The flammability rating for all construction parts of the products meets requirements for V-0 class material according to IEC 60695-11-10.

The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL60950.

Isolated DC/DC converters
It is recommended that a slow blow fuse with a rating twice the maximum input current per selected product be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter.

In the rare event of a component problem in the input filter or in the DC/DC converter that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the faulty DC/DC converter from the input power source so as not to affect the operation of other parts of the system.
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.

The galvanic isolation is verified in an electric strength test. The test voltage (V_{iso}) between input and output is 1500 Vdc or 2250 Vdc for 60 seconds (refer to product specification). Leakage current is less than 1 μA at nominal input voltage.

24 V DC systems
The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

48 and 60 V DC systems
If the input voltage to Flex DC/DC converter is 75 Vdc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions.

Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 Vdc.

If the input power source circuit is a DC power system, the source may be treated as a TNV2 circuit and testing has demonstrated compliance with SELV limits and isolation requirements equivalent to Basic Insulation in accordance with IEC/EN/UL60950.

Non-isolated DC/DC regulators
The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_ref Operating Temperature (see Thermal Consideration section)</td>
<td>−40</td>
<td>85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>T_s Storage temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>V_i Input voltage</td>
<td>2.95</td>
<td>3.30</td>
<td>3.65</td>
<td>V</td>
</tr>
<tr>
<td>V_inh Inhibit On/Off pin voltage (see Operating Information section)</td>
<td>Positive logic option</td>
<td>V_inh < 0.5</td>
<td>Open</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Negative logic option</td>
<td>N/A</td>
<td>N/A</td>
<td>V</td>
</tr>
<tr>
<td>V_adj Adjust pin voltage (see Operating Information section)</td>
<td>N/A</td>
<td>N/A</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Fundamental Circuit Diagram

![PME 4000 series PoL Regulators](image-url)
1.0 V/6 A Electrical Specification

\(T_{\text{ref}} = -40 \) to \(+85\)\(^\circ\)C, \(V_i = 2.95 \) to \(3.65\) V, \(R_{\text{eq}} = 36.5\) k\(\Omega\), unless otherwise specified under Conditions.

Typical values given at: \(T_{\text{ref}} = +25\)\(^\circ\)C, \(V_i = 3.3\) V, max \(I_o \), unless otherwise specified under Conditions.

Additional \(C_{\text{in}}=100\mu\)F and \(C_{\text{out}}=100\mu\)F. See Operating Information section for selection of capacitor types.

Connect the sense pin, where available, to the output pin.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i) Input voltage range</td>
<td></td>
<td>2.95</td>
<td>3.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{i\text{off}}) Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>2.2</td>
<td>2.40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{i\text{on}}) Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>2.45</td>
<td>2.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(C_i) Internal input capacitance</td>
<td></td>
<td>25</td>
<td>(\mu)F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_o) Output power</td>
<td></td>
<td>0</td>
<td>6</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(\eta) Efficiency</td>
<td>50 % of max (I_o)</td>
<td>87.1</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{ss}}) Power Dissipation</td>
<td>max (I_o)</td>
<td>1.0</td>
<td>1.5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{id}}) Input idling power</td>
<td>(I_o = 0, V_i = 3.3) V</td>
<td>210</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_{\text{st}}) Input standby power</td>
<td>(V_i = 3.3) V (turned off with INHIBIT)</td>
<td>33</td>
<td>mW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{\text{ss}}) Static Input current</td>
<td>(V_i = 3.3) V, max (I_o)</td>
<td>2.2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_s) Switching frequency</td>
<td>0-100% of max (I_o)</td>
<td>550</td>
<td>600</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(V_{o\text{in}}) Output voltage initial setting and accuracy</td>
<td>(T_{\text{ref}} = +25)(^\circ)C, (V_i = 3.3) V, max (I_o)</td>
<td>0.980</td>
<td>1.000</td>
<td>1.020</td>
<td>V</td>
</tr>
<tr>
<td>(V_o) Output voltage tolerance band</td>
<td>10-100% of max (I_o)</td>
<td>0.970</td>
<td>1.030</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Idling voltage</td>
<td>(I_o = 0)</td>
<td>1.006</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>max (I_o)</td>
<td>±10</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>(V_i = 3.3) V, 0-100% of max (I_o)</td>
<td>±12</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_o) Load transient voltage deviation</td>
<td>(V_i = 3.3) V, Load step 50-100-50 % of max (I_o), (di/dt = 1) A/(\mu)s, see Note 1</td>
<td>±110</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_o) Load transient recovery time</td>
<td></td>
<td>30</td>
<td>(\mu)s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_r) Ramp-up time (from 10-90 % of (V_o))</td>
<td>max (I_o)</td>
<td>3.4</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_s) Start-up time (from (V_o) connection to 90% of (V_o))</td>
<td></td>
<td>6.7</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_l) Vin shutdown fall time. (From (V_i) off to 10% of (V_o))</td>
<td>Max (I_o)</td>
<td>330</td>
<td>(\mu)s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{\text{inh}}) INHIBIT start-up time</td>
<td>Max (I)</td>
<td>6.4</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{\text{inh}}) INHIBIT shutdown fall time (From INHIBIT off to 10% of (V_o))</td>
<td>Max (I_o)</td>
<td>20</td>
<td>(\mu)s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_o) Output current</td>
<td></td>
<td>0</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{lim}}) Current limit threshold</td>
<td>(T_{\text{ref}} <) max (T_{\text{ref}})</td>
<td>12</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{\text{osc}}) Output ripple & noise</td>
<td>See ripple & noise section, max (I_o, V_o)</td>
<td>20</td>
<td>mVp-p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Output filter according to Ripple & Noise section
1.0 V/6 A Typical Characteristics

Efficiency

Efficiency vs. load current and input voltage at $T_{ref} = +25^\circ C$

![Efficiency Graph]

Power Dissipation

Dissipated power vs. load current and input voltage at $T_{ref} = +25^\circ C$

![Power Dissipation Graph]

Output Current Derating

Available load current vs. ambient air temperature and airflow at $V_i = 3.3$ V, $V_{OUT} = 2.5$ V. See Thermal Consideration section.

![Output Current Derating Graph]

Output Characteristics

Output voltage vs. load current at $T_{ref} = +25^\circ C$

![Output Characteristics Graph]
1.0 V/6 A Typical Characteristics

Start-up

Start-up enabled by connecting V_i at:

$T_{ref} = +25^\circ C$, $I_o = 6$ A resistive load,
$V_i = 3.3$ V.

Top trace: output voltage (1.0 V/div.),
Bottom trace: input voltage (2 V/div.),
Time scale: 20 ms/div.

Output Ripple & Noise

Output voltage ripple (20mV/div.) at:
$T_{ref} = +25^\circ C$, $I_o = 6$ A resistive load,
$V_i = 3.3$ V. Time scale: 1 μs/div.

See the filter in the Output ripple and noise section (EMC Specification).

Output Load Transient Response

Output voltage response to load current step-change (3-6-3 A) at:
$T_{ref} = +25^\circ C$, $V_i = 3.3$ V.

Top trace: output voltage (100mV/div.),
Bottom trace: load current (10 A/div.),
Time scale: 0.1 ms/div.
1.2 V/6 A Electrical Specification

\(T_{\text{ref}} = -40 \) to +85°C, \(V_i = 2.95 \) to 3.65 V, \(R_{\text{eq}} = 17.4 \text{ k}\Omega \), unless otherwise specified under Conditions.

Typical values given at: \(T_{\text{ref}} = +25 \)°C, \(V_i = 3.3 \) V, max \(I_o \), unless otherwise specified under Conditions.

Additional \(C_{\text{in}} = 100 \mu\text{F} \) and \(C_{\text{out}} = 100 \mu\text{F} \). See Operating Information section for selection of capacitor types.

Connect the sense pin, where available, to the output pin.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_i) Input voltage range</td>
<td></td>
<td>2.95</td>
<td>3.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{off}}) Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>2.2</td>
<td>2.40</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{\text{on}}) Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>2.45</td>
<td>2.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(C_i) Internal input capacitance</td>
<td></td>
<td>25</td>
<td></td>
<td>(\mu\text{F})</td>
<td></td>
</tr>
<tr>
<td>(P_o) Output power</td>
<td></td>
<td>0</td>
<td>7.2</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(\eta) Efficiency</td>
<td>50 % of max (I_o)</td>
<td>88.6</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>max (I_o)</td>
<td>87.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_s) Power Dissipation</td>
<td>max (I_o)</td>
<td>1.0</td>
<td>1.5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{id}}) Input idling power</td>
<td>(I_o = 0, V_i = 3.3) V</td>
<td>220</td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{IC}}) Input standby power</td>
<td>(V_i = 3.3) V (turned off with INHIBIT)</td>
<td>33</td>
<td></td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>(I_s) Static Input current</td>
<td>(V_i = 3.3) V, max (I_o)</td>
<td>2.5</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(t_s) Switching frequency</td>
<td>0-100% of max (I_o)</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>kHz</td>
</tr>
</tbody>
</table>

\(V_{\text{in}} \) Output voltage initial setting and accuracy

\(T_{\text{ref}} = +25 \)°C, \(V_i = 3.3 \) V, max \(I_o \)

\(V_o \) Output voltage tolerance band

10-100\% of max \(I_o \)

\(\Delta I_o = 0 \)

Line regulation

max \(I_o \)

±10 mV

Load regulation

\(V_i = 3.3 \) V, 0-100\% of max \(I_o \)

±12 mV

\(V_o \) Load transient voltage deviation

\(V_i = 3.3 \) V, Load step 50-100-50 \% of max \(I_o \), \(\Delta \text{di/dt} = 1 \text{ A/\mu s} \), see Note 1

±120 mV

\(t_o \) Load transient recovery time

max \(I_o \)

40 \(\mu\text{s} \)

\(t_s \) Start-up time

(max from \(V_i \) connection to 90\% of \(V_o \))

3.6 ms

\(t_i \) Vin shutdown fall time.

(From \(V_i \) off to 10\% of \(V_o \))

Max \(I_o \)

320 \(\mu\text{s} \)

\(I_o = 1\) A

1500 \(\mu\text{s} \)

\(t_{\text{ON}} \) INHIBIT start-up time

Max \(I_o \)

6.5 ms

\(t_{\text{OFF}} \) INHIBIT shutdown fall time.

(From INHIBIT off to 10\% of \(V_o \))

Max \(I_o \)

30 \(\mu\text{s} \)

\(I_o = 0.1\) A

1.4 ms

\(I_o \) Output current

0 6 A

\(I_{\text{LIM}} \) Current limit threshold

\(T_{\text{ref}} < \text{max } T_{\text{ref}} \)

12 A

\(V_{\text{Oac}} \) Output ripple & noise

See ripple & noise section, max \(I_o, V_o \)

20 mVp-p

Note 1: Output filter according to Ripple & Noise section
1.2 V/6 A Typical Characteristics

Efficiency

![Efficiency Graph](image)

Efficiency vs. load current and input voltage at $T_{ref} = +25^\circ C$

Power Dissipation

![Power Dissipation Graph](image)

Dissipated power vs. load current and input voltage at $T_{ref} = +25^\circ C$

Output Current Derating

![Output Current Derating Graph](image)

Available load current vs. ambient air temperature and airflow at $V_i = 3.3 \, V$, $V_{OUT} = 2.5 \, V$. See Thermal Consideration section.

Output Characteristics

![Output Characteristics Graph](image)

Output voltage vs. load current at $T_{ref} = +25^\circ C$
1.2 V/6 A Typical Characteristics

Start-up

- **Start-up enabled by connecting VI at:**
 - $T_{ref} = +25^\circ C$, $V_I = 3.3$ V, $I_O = 6$ A resistive load.

- **Top trace:** output voltage (1.0 V/div.).
- **Bottom trace:** input voltage (2 V/div.).
- **Time scale:** (20 ms/div.).

Output Ripple & Noise

- **Output voltage ripple (20mV/div.) at:**
 - $T_{ref} = +25^\circ C$, $I_O = 6$ A resistive load, $V_I = 3.3$ V. Time scale: 1 μs/div.

- **See the filter in the Output ripple and noise section (EMC Specification).**

Output Load Transient Response

- **Output voltage response to load current step-change (3-6-3 A) at:**
 - $T_{ref} = +25^\circ C$, $V_I = 3.3$ V.

- **Top trace:** output voltage (100mV/div.).
- **Bottom trace:** load current (10 A/div.).
- **Time scale:** 0.1 ms/div.

Shut-down

- **Shut-down enabled by disconnecting VI at:**
 - $T_{ref} = +25^\circ C$, $I_O = 6$ A resistive load, $V_I = 3.3$ V.

- **Top trace:** output voltage (1.0 V/div.).
- **Bottom trace:** input voltage (2 V/div.).
- **Time scale:** 10.0 ms/div.

Output Load Transient Response

- **Output voltage response to load current step-change (3-6-3 A) at:**
 - $T_{ref} = +25^\circ C$, $V_I = 3.3$ V.

- **Top trace:** output voltage (100mV/div.).
- **Bottom trace:** load current (10 A/div.).
- **Time scale:** 0.1 ms/div.
1.5 V/6 A Electrical Specification

PME 4118T

\(T_{\text{ref}} = -40 \) to +85°C, \(V_{\text{i}} = 2.95 \) to 3.65 V, \(R_{\text{eq}} = 8.87 \, \text{k}\Omega \), unless otherwise specified under Conditions.

Typical values given at: \(T_{\text{ref}} = +25^\circ\text{C}, \ V_{\text{i}} = 3.3 \, \text{V} \), max \(I_{\text{O}} \), unless otherwise specified under Conditions.

Additional \(C_{\text{in}} = 100\mu\text{F} \) and \(C_{\text{out}} = 100\mu\text{F} \). See Operating Information section for selection of capacitor types.

Connect the sense pin, where available, to the output pin.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{i}}) Input voltage range</td>
<td>(T_{\text{ref}} = +25^\circ\text{C}, \ V_{\text{i}} = 3.3 , \text{V}), max (I_{\text{O}})</td>
<td>2.95</td>
<td>3.65</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{i}}) Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td></td>
<td>2.2</td>
<td>2.40</td>
<td>V</td>
</tr>
<tr>
<td>(V_{\text{on}}) Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td></td>
<td>2.45</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>(C_{\text{i}}) Internal input capacitance</td>
<td>(I_{\text{O}} = 0, \ V_{\text{i}} = 3.3 , \text{V})</td>
<td></td>
<td>25</td>
<td></td>
<td>(\mu\text{F})</td>
</tr>
<tr>
<td>(P_{\text{O}}) Output power</td>
<td></td>
<td>0</td>
<td>9</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>(\eta) Efficiency</td>
<td>50 % of max (I_{\text{O}})</td>
<td></td>
<td>90.9</td>
<td>90.9</td>
<td>%</td>
</tr>
<tr>
<td>(P_{\text{D}}) Power Dissipation</td>
<td>max (I_{\text{O}})</td>
<td></td>
<td>1.0</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>(P_{\text{IC}}) Input idling power</td>
<td>(I_{\text{O}} = 0, \ V_{\text{i}} = 3.3 , \text{V})</td>
<td></td>
<td>220</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>(I_{\text{S}}) Static Input current</td>
<td>(V_{\text{i}} = 3.3 , \text{V},) max (I_{\text{O}})</td>
<td></td>
<td>3.1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>(t_{\text{S}}) Switching frequency</td>
<td>0-100% of max (I_{\text{O}})</td>
<td>550</td>
<td>600</td>
<td>650</td>
<td>kHz</td>
</tr>
</tbody>
</table>

V_{\text{Oi}} Output voltage initial setting and accuracy

\(T_{\text{ref}} = +25^\circ\text{C}, \ V_{\text{i}} = 3.3 \, \text{V} \), max \(I_{\text{O}} \)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Conditions} & \text{min} & \text{typ} & \text{max} \\
\hline
\text{V}_{\text{oi}} & 1.470 & 1.500 & 1.530 \\
\hline
\end{array}
\]

V_{\text{O}} Output voltage tolerance band

10-100% of max \(I_{\text{O}} \)

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Conditions} & \text{min} & \text{typ} & \text{max} \\
\hline
\text{V}_{\text{o}} & 1.455 & 1.503 & 1.545 \\
\hline
\end{array}
\]

Idling voltage

\(I_{\text{i}} = 0 \)

Line regulation

max \(I_{\text{O}} \) ±10 mV

Load regulation

\(V_{\text{i}} = 3.3 \, \text{V}, 0-100\% \) of max \(I_{\text{O}} \) ±12 mV

\(V_{\text{o}} \) Load transient voltage deviation

\(V_{\text{i}} = 3.3 \, \text{V}, \) Load step 50-100-50 % of max \(I_{\text{O}} \), \(\text{di/dt} = 1 \, \text{A/\mu s} \), see Note 1 ±130 mV

\(t_{\text{r}} \) Load transient recovery time

40 \(\mu\text{s} \)

\(t_{\text{C}} \) Ramp-up time (from 10-90 % of \(V_{\text{o}} \))

max \(I_{\text{O}} \) 3.7 ms

\(t_{\text{s}} \) Start-up time (from \(V_{\text{i}} \) connection to 90% of \(V_{\text{o}} \))

6.6 ms

\(t_{\text{d}} \) Vin shutdown fall time. (From \(V_{\text{i}} \) off to 10% of \(V_{\text{o}} \))

Max \(I_{\text{i}} \) 270 \(\mu\text{s} \)

\(I_{\text{i}} = 1 \, \text{A} \) 1300 \(\mu\text{s} \)

\(t_{\text{h}} \) INHIBIT start-up time

Max \(I_{\text{i}} \) 6.4 ms

\(t_{\text{h}} \) INHIBIT shutdown fall time (From INHIBIT off to 10% of \(V_{\text{o}} \))

Max \(I_{\text{i}} \) 40 \(\mu\text{s} \)

\(I_{\text{i}} = 0.1 \, \text{A} \) 1.8 ms

\(I_{\text{O}} \) Output current

0 6 A

\(I_{\text{lim}} \) Current limit threshold

\(T_{\text{ref}} < \text{max} \, T_{\text{ref}} \)

12 A

V_{\text{Oac}} Output ripple & noise

See ripple & noise section, max \(I_{\text{O}}, V_{\text{Oi}} \) 20 mVp-p

Note 1: Output filter according to Ripple & Noise section
1.5 V/6 A Typical Characteristics

Efficiency

![Efficiency graph](image)

Efficiency vs. load current and input voltage at $T_{ref} = +25^\circ C$

Power Dissipation

![Power Dissipation graph](image)

Dissipated power vs. load current and input voltage at $T_{ref} = +25^\circ C$

Output Current Derating

![Output Current Derating graph](image)

Available load current vs. ambient air temperature and airflow at $V_i = 3.3$ V, $V_{OUT} = 2.5$ V. See Thermal Consideration section.

Output Characteristics

![Output Characteristics graph](image)

Output voltage vs. load current at $T_{ref} = +25^\circ C$
1.5 V/6 A Typical Characteristics

Start-up

Start-up enabled by connecting \(V_i \) at:
- \(T_{\text{ref}} = +25°C \)
- \(V_i = 3.3 \) V
- \(I_o = 6 \) A resistive load.

Top trace: output voltage (1.0 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 20 ms/div.

Shut-down

Shut-down enabled by disconnecting \(V_i \) at:
- \(T_{\text{ref}} = +25°C \)
- \(I_o = 6 \) A resistive load,
- \(V_i = 3.3 \) V.

Top trace: output voltage (1.0 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 10.0 ms/div.

Output Ripple & Noise

Output voltage ripple (20mV/div.) at:
- \(T_{\text{ref}} = +25°C \)
- \(I_o = 6 \) A resistive load,
- \(V_i = 3.3 \) V.
Time scale: 1 \(\mu \)s/div.

See the filter in the Output ripple and noise section (EMC Specification).

Output Load Transient Response

Output voltage response to load current step-change (3-6-3 A) at:
- \(T_{\text{ref}} = +25°C \)
- \(V_i = 3.3 \) V.

Top trace: output voltage (100mV/div.).
Bottom trace: load current (10 A/div.).
Time scale: 0.1 ms/div.
1.8 V/6 A Electrical Specification

$T_{\text{ref}} = -40$ to $+85^\circ \text{C}$, $V_{\text{i}} = 2.95$ to 3.65 V, $R_{\text{eq}} = 5.49 \text{ k}\Omega$, unless otherwise specified under Conditions.

Typical values given at: $T_{\text{ref}} = +25^\circ \text{C}$, $V_{\text{i}} = 3.3$ V, max I_{o}, unless otherwise specified under Conditions.

Additional $C_{\text{in}}=100\mu\text{F}$ and $C_{\text{out}}=100\mu\text{F}$. See Operating Information section for selection of capacitor types.

Connect the sense pin, where available, to the output pin.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{i}</td>
<td>Input voltage range</td>
<td>2.95</td>
<td>3.65</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{i-off}}$</td>
<td>Turn-off input voltage</td>
<td>2.2</td>
<td>2.40</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{i-on}}$</td>
<td>Turn-on input voltage</td>
<td>2.45</td>
<td>2.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>C_{i}</td>
<td>Internal input capacitance</td>
<td></td>
<td></td>
<td>25</td>
<td>μF</td>
</tr>
<tr>
<td>P_{o}</td>
<td>Output power</td>
<td>0</td>
<td>10.8</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50 % of max I_{o}</td>
<td>92.0</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max I_{o}</td>
<td>91.2</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>P_{d}</td>
<td>Power Dissipation</td>
<td>max I_{o}</td>
<td>1.0</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>P_{in}</td>
<td>Input idling power</td>
<td>$I_{\text{o}} = 0$, $V_{\text{i}} = 3.3$ V</td>
<td>230</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>P_{in}</td>
<td>Input standby power</td>
<td>$V_{\text{i}} = 3.3$ V (turned off with INHIBIT)</td>
<td>33</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>I_{i}</td>
<td>Static Input current</td>
<td>$V_{\text{i}} = 3.3$ V, max I_{o}</td>
<td>3.6</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>t_{t}</td>
<td>Switching frequency</td>
<td>0-100% of max I_{o}</td>
<td>550</td>
<td>600</td>
<td>650</td>
</tr>
<tr>
<td>V_{Oi}</td>
<td>Output voltage initial setting and accuracy</td>
<td>$T_{\text{ref}} = +25^\circ \text{C}$, $V_{\text{i}} = 3.3$ V, max I_{o}</td>
<td>1.764</td>
<td>1.800</td>
<td>1.836</td>
</tr>
<tr>
<td>V_{o}</td>
<td>Output voltage tolerance band</td>
<td>10-100% of max I_{o}</td>
<td>1.746</td>
<td>1.854</td>
<td>V</td>
</tr>
<tr>
<td>Idling voltage</td>
<td>$I_{\text{o}} = 0$</td>
<td></td>
<td></td>
<td>1.801</td>
<td>V</td>
</tr>
<tr>
<td>Line regulation</td>
<td>max I_{o}</td>
<td>±10</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>$V_{\text{i}} = 3.3$ V, 0-100% of max I_{o}</td>
<td>±12</td>
<td></td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>V_{L}</td>
<td>Load transient voltage deviation</td>
<td>$V_{\text{i}} = 3.3$ V, Load step 50-100-50 % of max I_{o}, $\text{di/dt} = 1 \text{ A/\mu s}$, see Note 1</td>
<td>±130</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>t_{r}</td>
<td>Load transient recovery time</td>
<td>max I_{o}</td>
<td>40</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>t_{r}</td>
<td>Ramp-up time (from 10-90 % of V_{o})</td>
<td>max I_{o}</td>
<td>3.8</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>t_{s}</td>
<td>Start-up time (from V_{i} connection to 90% of V_{o})</td>
<td></td>
<td>6.6</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>t_{f}</td>
<td>Vin shutdown fall time. (From V_{i} off to 10 % of V_{o})</td>
<td>max I_{o}</td>
<td>250</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{o}} = 1$A</td>
<td>1200</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>$t_{\text{in-H}}$</td>
<td>INHIBIT start-up time</td>
<td>max I_{o}</td>
<td>6.4</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td>INHIBIT shutdown fall time</td>
<td>max I_{o}</td>
<td>40</td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td></td>
<td>(From INHIBIT off to 10 % of V_{o})</td>
<td>$I_{\text{o}} = 0.1$ A</td>
<td>2.2</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>I_{o}</td>
<td>Output current</td>
<td></td>
<td>0</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>I_{in}</td>
<td>Current limit threshold</td>
<td>$T_{\text{ref}} < \text{max } T_{\text{ref}}$</td>
<td>12</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>V_{nac}</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, max I_{o}, V_{o}</td>
<td>20</td>
<td></td>
<td>mVp-p</td>
</tr>
</tbody>
</table>

Note 1: Output filter according to Ripple & Noise section
1.8 V/6 A Typical Characteristics

Efficiency

![Efficiency vs. load current and input voltage at $T_{ref} = +25^\circ C$](image1)

Power Dissipation

![Dissipated power vs. load current and input voltage at $T_{ref} = +25^\circ C$](image2)

Output Current Derating

![Available load current vs. ambient air temperature and airflow at $V_I = 3.3 V$, $V_{OUT} = 2.5 V$. See Thermal Consideration section.](image3)

Output Characteristics

![Output voltage vs. load current at $T_{ref} = +25^\circ C$](image4)
1.8 V/6 A Typical Characteristics

Start-up

![Image of start-up characteristic](image1)

Start-up enabled by connecting V_i at:
- $T_{ref} = +25^\circ C$
- $V_I = 3.3 \text{ V}$
- $I_O = 6 \text{ A resistive load}$

Top trace: output voltage (1.0 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: (20 ms/div.).

Shut-down

![Image of shut-down characteristic](image2)

Shut-down enabled by disconnecting V_i at:
- $T_{ref} = +25^\circ C$
- $I_O = 6 \text{ A resistive load}$
- $V_I = 3.3 \text{ V}$

Top trace: output voltage (1.0 V/div.).
Bottom trace: input voltage (2 V/div.).
Time scale: 10.0 ms/div.

Output Ripple & Noise

![Image of output ripple and noise characteristic](image3)

Output voltage ripple (20mV/div.) at:
- $T_{ref} = +25^\circ C$
- $I_O = 6 \text{ A resistive load}$
- $V_I = 3.3 \text{ V}$
Time scale: 1 μs/div.

See the filter in the Output ripple and noise section (EMC Specification).

Output Load Transient Response

![Image of output load transient response characteristic](image4)

Output voltage response to load current step change (3-6-3 A) at:
- $T_{ref} =+25^\circ C$
- $V_I = 3.3 \text{ V}$
Top trace: output voltage (100mV/div.).
Bottom trace: load current (10 A/div.).
Time scale: 0.1 ms/div.
2.5 V/6 A Electrical Specification

$T_{\text{ref}} = -40$ to $+85^\circ\text{C}$, $V_i = 2.95$ to 3.65 V, $R_{\text{tot}} = 2.21$ kΩ, unless otherwise specified under Conditions.

Typical values given at: $T_{\text{ref}} = +25^\circ\text{C}$, $V_i = 3.3$ V, max I_o , unless otherwise specified under Conditions.

Additional $C_{\text{in}}=100\mu\text{F}$ and $C_{\text{out}}=100\mu\text{F}$. See Operating Information section for selection of capacitor types.

Connect the sense pin, where available, to the output pin.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th>min</th>
<th>typ</th>
<th>max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_i</td>
<td>Input voltage range</td>
<td>2.95</td>
<td>3.65</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{ioff}</td>
<td>Turn-off input voltage</td>
<td>Decreasing input voltage</td>
<td>2.2</td>
<td>2.40</td>
<td>V</td>
</tr>
<tr>
<td>V_{ion}</td>
<td>Turn-on input voltage</td>
<td>Increasing input voltage</td>
<td>2.45</td>
<td>2.8</td>
<td>V</td>
</tr>
<tr>
<td>C_i</td>
<td>Internal input capacitance</td>
<td>25</td>
<td></td>
<td>μF</td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>Output power</td>
<td>0</td>
<td>15</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
<td>50% of max I_o</td>
<td>94.7</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>P_p</td>
<td>Power Dissipation</td>
<td>max I_o</td>
<td>1.0</td>
<td>1.5</td>
<td>W</td>
</tr>
<tr>
<td>P_{id}</td>
<td>Input idling power</td>
<td>$I_o=0$, $V_i=3.3$ V</td>
<td>210</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>P_{st}</td>
<td>Input standby power</td>
<td>$V_i=3.3$ V turned off with INHIBIT</td>
<td>33</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>I_s</td>
<td>Static Input current</td>
<td>$V_i=3.3$ V, max I_o</td>
<td>4.9</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>f_s</td>
<td>Switching frequency</td>
<td>0-100% of max I_o</td>
<td>550</td>
<td>600</td>
<td>650 Hz</td>
</tr>
</tbody>
</table>

T_{\text{ref}} = +25^\circ\text{C}, V_i = 3.3$ V, max I_o

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Conditions</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{oi}</td>
<td>Output voltage initial setting and accuracy</td>
<td>$T_{\text{ref}} = +25^\circ\text{C}, V_i = 3.3$ V, max I_o</td>
<td>2.450</td>
<td>2.500</td>
<td>2.550</td>
</tr>
<tr>
<td>V_{t}</td>
<td>Output voltage tolerance band</td>
<td>10-100% of max I_o</td>
<td>2.425</td>
<td>2.507</td>
<td>2.575</td>
</tr>
<tr>
<td>Idling voltage</td>
<td>$I_o=0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line regulation</td>
<td>max I_o</td>
<td>±10</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load regulation</td>
<td>$V_i=3.3$ V, 0-100% of max I_o</td>
<td>±12</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{l}</td>
<td>Load transient voltage deviation</td>
<td>$V_i=3.3$ V, Load step 50-100-50 % of max I_o, $di/dt = 1$ A/μs, see Note 1</td>
<td>±130</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>t_{r}</td>
<td>Load transient recovery time</td>
<td>max I_o</td>
<td>40</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>Ramp-up time (from 10-90% of V_o)</td>
<td></td>
<td>4.0</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up time (from V_i connection to 90% of V_o)</td>
<td></td>
<td>6.7</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Vin shutdown fall time.</td>
<td>Max I_o</td>
<td>330</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>(From V_i off to 10% of V_o)</td>
<td>$I_o=1$A</td>
<td>500</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{inh}</td>
<td>INHIBIT start-up time</td>
<td>Max I_o</td>
<td>6.4</td>
<td>ms</td>
<td></td>
</tr>
<tr>
<td>INHIBIT shutdown fall time</td>
<td>Max I_o</td>
<td>60</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(From INHIBIT off to 10% of V_o)</td>
<td>$I_o=0.1$ A</td>
<td>2.9</td>
<td>ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_o</td>
<td>Output current</td>
<td>0</td>
<td>6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>I_{lim}</td>
<td>Current limit threshold</td>
<td>$T_{\text{ref}} < \text{max}$ T_{ref}</td>
<td>12</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>V_{ov}</td>
<td>Output ripple & noise</td>
<td>See ripple & noise section, max I_o, V_{oi}</td>
<td>20</td>
<td>mVp-p</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Output filter according to Ripple & Noise section
2.5 V/6 A Typical Characteristics

Efficiency

- Efficiency vs. load current and input voltage at $T_{\text{ref}} = +25^\circ\text{C}$

- Efficiency graph shows efficiency values ranging from 70% to 100% at various load currents.

- Input voltage range: 2.95 V to 3.65 V

Power Dissipation

- Dissipated power vs. load current and input voltage at $T_{\text{ref}} = +25^\circ\text{C}$

- Power dissipation increases with increasing load current.

Output Current Derating

- Available load current vs. ambient air temperature and airflow at $V_i = 3.3\text{ V}, V_{\text{OUT}} = 2.5\text{ V}$. See Thermal Consideration section.

- Graph shows derating curves for different airflow conditions.

Output Characteristics

- Output voltage vs. load current at $T_{\text{ref}} = +25^\circ\text{C}$

- Output voltage remains relatively constant across the load current range.

Technical Specification

PME 4000 series PoL Regulators
Input 2.95 - 3.65 V, Output up to 6 A / 15 W
2.5 V/6 A Typical Characteristics

Start-up

![Start-up Graph](image1)

- Start-up enabled by connecting V_{I} at: $T_{ref} = +25^\circ C$, $V = 3.3 V$, $I_{O} = 6 A$ resistive load.
- Top trace: output voltage (1.0 V/div.).
- Bottom trace: input voltage (2 V/div.).
- Time scale: (20 ms/div.).

Shut-down

![Shut-down Graph](image2)

- Shut-down enabled by disconnecting V_{I} at: $T_{ref} = +25^\circ C$, $I_{O} = 6 A$ resistive load, $V = 3.3 V$.
- Top trace: output voltage (1.0 V/div.).
- Bottom trace: input voltage (2 V/div.).
- Time scale: 10.0 ms/div.

Output Ripple & Noise

![Ripple & Noise Graph](image3)

- Output voltage ripple (20mV/div.) at: $T_{ref} = +25^\circ C$, $I_{O} = 6 A$ resistive load, $V = 3.3 V$. Time scale: 1 μs/div.
- See the filter in the Output ripple and noise section (EMC Specification).

Output Load Transient Response

![Load Transient Graph](image4)

- Output voltage response to load current step-change (3-6-3 A) at: $T_{ref} = +25^\circ C$, $V = 3.3 V$.
- Top trace: output voltage (100mV/div.).
- Bottom trace: load current (10 A/div.).
- Time scale: 0.1 ms/div.
EMC Specification

Conducted EMI measured according to test set-up. The fundamental switching frequency is 600 kHz for PME 4118T @ \(V_i = 3.3 \, \text{V} \), max \(I_o \).

Conducted EMI Input terminal value (typ)

<table>
<thead>
<tr>
<th>Input terminal value (typ)</th>
<th>TBD</th>
</tr>
</thead>
</table>

EMI without filter

Test set-up

Layout recommendation

The radiated EMI performance of the DC/DC regulator will depend on the PCB layout and ground layer design. It is also important to consider the stand-off of the DC/DC regulator.

If a ground layer is used, it should be connected to the output of the DC/DC regulator and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PCB and improve the high frequency EMC performance.

Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.

![Output ripple and noise test setup](image)

Operating information

Extended information for POLA products is found in Application Note POLA.

Input Voltage

The input voltage range 2.95 to 3.65 Vdc makes the product easy to use in intermediate bus applications when powered by a regulated bus converter.

Turn-off Input Voltage

The DC/DC regulators monitor the input voltage and will turn on and turn off at predetermined levels. The minimum hysteresis between turn on and turn off input voltage is 50mV.

Remote Control (RC) Inhibit

The products are fitted with a remote control function referenced to the primary negative input connection (- In), positive logic. The INHIBIT function allows the regulator to be turned on/off by an external device like a semiconductor or mechanical switch. The INHIBIT pin has an internal pull up resistor to + In.

The regulator will turn on when the input voltage is applied with the INHIBIT pin open. Turn off is achieved by connecting the INHIBIT pin to the - In. To ensure safe turn off, the voltage difference between INHIBIT pin and the - In pin shall be less than 0.6V. The regulator will restart automatically when this connection is opened.
External Capacitors
Input capacitors:
The recommended input capacitors are determined by the 100 μF minimum capacitance and 300 mArms minimum ripple current rating.

Output capacitors (optional):
The recommended output capacitance of 100 μF will allow the module to meet its transient response specification as defined in the electrical specification.

When using one or more non-ceramic capacitors, the calculated equivalent ESR should be no lower than 4 mΩ (7mΩ using the manufacturer’s maximum ESR for a single capacitor).

Input And Output Impedance
The impedance of both the input source and the load will interact with the impedance of the DC/DC regulator. It is important that the input source has low characteristic impedance. The regulators are designed for stable operation without external capacitors connected to the input or output. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors. If the input voltage source contains significant inductance, the addition of a 100 μF capacitor across the input of the regulator will ensure stable operation. The capacitor is not required when powering the DC/DC regulator from an input source with an inductance below 10 μH.

External Decoupling Capacitors
When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. Ceramic capacitors will also reduce any high frequency noise at the load.

It is equally important to use low resistance and low inductance PCB layouts and cabling. External decoupling capacitors will become part of the control loop of the DC/DC regulator and may affect the stability margins. As a “rule of thumb”, 100 μF/A of output current can be added without any additional analysis. The ESR of the capacitors is a very important parameter. Power Modules guarantee stable operation with a verified ESR value of >10 mΩ across the output connections.

For further information please contact your local Flex representative.

Output Voltage Adjust (V_adj)
The DC/DC regulators have an Output Voltage Adjust pin (V_adj). This pin can be used to adjust the output voltage above or below Output voltage initial setting.

To increase or decrease the voltage the resistor should be connected between the V_adj pin and GND pin. The resistor value of the Output voltage adjust function is according to information given under the Output section for the respective product.

Parallel Operation
Two regulators may be paralleled for redundancy if the total power is equal or less than P_O max. It is not recommended to parallel the regulators without using external current sharing circuits.

Over Current Protection (OCP)
The regulators include current limiting circuitry for protection at continuous overload.

The output voltage will decrease towards zero for output currents in excess of the over-current threshold. The regulator will resume normal operation after removal of the overload.

The load distribution should be designed for the maximum output short circuit current specified. The current limit operation is a “hick up” mode current limit.

Soft-start Power Up
From the moment a valid input voltage is applied, the soft-start control introduces a short time-delay (typically 5-10 ms) before allowing the output voltage to rise.

The initial rise in input current when the input voltage first starts to rise is the charge current drawn by the input capacitors. Power-up is complete within 15 ms.
Auto-Track™ Function
Auto-Track was designed to simplify the amount of circuitry required to make the output voltage from each module power up and power down in sequence. The sequencing of two or more supply voltages during power up is a common requirement for complex mixed-signal applications, that use dual-voltage VLSI ICs such as DSPs, micro-processors and ASICs.

Pre-Bias Startup Capability
This often occurs in complex digital systems when current from another power source is backfed through a dual-supply logic component, such as FPGA or ASIC. The PME(3.3/5.0V Vin) incorporate synchronous rectifiers, but will not sink current during startup, or whenever the Inhibit pin is held low. However, to ensure satisfactory operation of this function, certain conditions must be maintained.

Thermal Consideration

General
The regulators are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

Circuit is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the regulator. Increased airflow enhances the cooling of the regulator.

The DC/DC regulator is tested on a 254 x 254 mm, 35 μm (1 oz), 8-layer test board mounted vertically in a wind tunnel with a cross-section of 305 x 305 mm.

Proper cooling of the DC/DC regulator can be verified by measuring the temperature at positions P1, P2 and P3. The temperature at these positions should not exceed the max values provided in the table below.

Note that the max value is the absolute maximum rating (non destruction) and that the electrical Output data is guaranteed up to Tref +85°C.

See Design Note 019 for further information.

<table>
<thead>
<tr>
<th>Position</th>
<th>Device</th>
<th>Designation</th>
<th>max value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Pcb</td>
<td></td>
<td>130°C</td>
</tr>
<tr>
<td>P2</td>
<td>Mosfet</td>
<td>Tref</td>
<td>130°C</td>
</tr>
<tr>
<td>P3</td>
<td>Inductor</td>
<td></td>
<td>130°C</td>
</tr>
</tbody>
</table>
Thermal Consideration continued

Definition of reference temperature (T_{ref})
The reference temperature is used to monitor the temperature limits of the product. Temperatures above maximum T_{ref} are not allowed and may cause degradation or permanent damage to the product. T_{ref} is also used to define the temperature range for normal operating conditions. T_{ref} is defined by the design and used to guarantee safety margins, proper operation and high reliability of the module.

Ambient Temperature Calculation
TBD

Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Common ground connection for the V_i and V_{out} power connections.</td>
</tr>
<tr>
<td>2</td>
<td>Track</td>
<td>This is an analog control input that enables the output voltage to follow an external voltage.</td>
</tr>
<tr>
<td>3</td>
<td>V_i</td>
<td>The positive input voltage power node to the module.</td>
</tr>
<tr>
<td>4</td>
<td>Inhibit</td>
<td>Applying a low-level ground signal to this input disables the module’s output.</td>
</tr>
<tr>
<td>5</td>
<td>V_o Adjust</td>
<td>A 0.1 W 1% resistor must be directly connected between this pin and pin 1(GND) to set the output voltage.</td>
</tr>
<tr>
<td>6</td>
<td>V_{out}</td>
<td>The regulated positive power output with respect to the GND node.</td>
</tr>
</tbody>
</table>
Mechanical Information (Surface mount version)

NOTES:

A. All linear dimensions are in inches (mm).
B. This drawing is subject to change without notice.
C. 2 place decimals are ±0.050 (±0.76mm).
D. 3 place decimals are ±0.001 (±0.254mm).
E. Recommended keep out area for user components.
F. Power pin connection should utilize two or more vias to the interior power plane of 0.025 (0.63) ID. per input, ground and output pin for the electrical equivalent.
G. Paste screen opening: 0.080 (2.03) to 0.085 (2.16).
H. Pad type: solder mask defined.

J. All pins: Material - Copper Alloy
 Plating - 10µ Tin over 4µ Nickel
 Solder Ball - See product data sheet.
K. Dimension prior to reflow solder.

MECHANICAL DATA FOR THE PME DC/DC REGULATOR

Weight: 2.9 g

Use recommended footprint and solder recommendations together with solder reflow recommendations to ensure a reliable interconnection.
Mechanical Information (Through hole mount version)

NOTES:
A. All linear dimensions are in inches (mm).
B. This drawing is subject to change without notice.
C. 2 place decimals are +0.030 (±0.76mm).
D. 3 place decimals are ±0.010 (±0.25mm).
E. Recommended keep out area for user components.
F. Pins are 0.040" (1.02) diameter with 0.070" (1.78) diameter standoff shoulder.
G. All pins: Material - Copper Alloy
 Plating - 10µm Tin over 44µm Nickel

MECHANICAL DATA FOR THE PME DC/DC REGULATOR

- Weight: 2.6 g
- Use recommended footprint and solder recommendations together with solder reflow recommendations to ensure a reliable interconnection.
Soldering Information - Surface mounting
The surface mount version of the product is intended for convection or vapor phase reflow Pb-free processes. To achieve a good and reliable soldering result, make sure to follow the recommendations from the solder paste supplier, to use state-of-the-art reflow equipment and reflow profiling techniques as well as the following guidelines.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside of the DC/DC regulator. The cleaning residues may affect long time reliability and isolation voltage.

Minimum pin temperature recommendations
Pin number 5 is chosen as reference location for the minimum pin temperature recommendations since this will be the coolest solder joint during the reflow process.

SnPb solder processes
For Pb solder processes, a pin temperature (TPIN) in excess of the solder melting temperature, (TL, +183 °C for Sn63/Pb37) for more than 30 seconds, and a peak temperature of +210 °C is recommended to ensure a reliable solder joint.

Lead-free (Pb-free) solder processes
For Pb-free solder processes, a pin temperature (TPIN) in excess of the solder melting temperature (TL, +217 to +221 °C for Sn/Ag/Cu solder alloys) for more than 30 seconds, and a peak temperature of +235 °C on all solder joints is recommended to ensure a reliable solder joint.

Maximum regulator temperature requirements
To avoid damage or performance degradation of the product, the reflow profile should be optimized to avoid excessive heating. The maximum product temperature shall be monitored by attaching a thermocoupler to the top of the main transformer.

A sufficiently extended preheat time is recommended to ensure an even temperature across the host PCB, for both small and large devices. To reduce the risk of excessive heating is also recommended to reduce the time in the reflow zone as much as possible.

SnPb solder processes (PENDING)
For conventional SnPb solder processes, the product is qualified for MSL 1 according to IPC/JEDEC standard J-STD-020C.

During reflow, TP must not exceed +225 °C at any time.

Lead-free (Pb-free) solder processes
For Pb-free solder processes, the product is qualified for MSL 3 according to IPC/JEDEC standard J-STD-020C.

During reflow, TP must not exceed +260 °C at any time.

<table>
<thead>
<tr>
<th>Profile features</th>
<th>SnPb eutectic assembly</th>
<th>Pb-free assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average ramp-up rate</td>
<td>3 °C/s max</td>
<td>3 °C/s max</td>
</tr>
<tr>
<td>Solder melting temperature</td>
<td>TL +183 °C</td>
<td>+221 °C</td>
</tr>
<tr>
<td>Peak product temperature</td>
<td>TP +225 °C</td>
<td>+260 °C</td>
</tr>
<tr>
<td>Average ramp-down rate</td>
<td>6 °C/s max</td>
<td>6 °C/s max</td>
</tr>
<tr>
<td>Time 25 °C to peak temperature</td>
<td>6 minutes max</td>
<td>8 minutes max</td>
</tr>
</tbody>
</table>
Soldering Information – Through Hole Mounting

The through hole mount version of the product is intended for through hole mounting in a PCB. When wave soldering is used, the temperature on the pins is specified to maximum 260 °C for maximum 10 seconds.

Maximum preheat rate of 4 °C/s and temperature of max 150 °C is suggested. When hand soldering, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean (NC) flux is recommended to avoid entrapment of cleaning fluids in cavities inside of the DC/DC power module. The residues may affect long time reliability and isolation voltage.
Delivery package information for SMD

The products are delivered in antistatic trays (JEDEC standard) or in antistatic carrier tape (EIA standard).

<table>
<thead>
<tr>
<th>Tray specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surface resistance</td>
</tr>
<tr>
<td>Bake ability</td>
</tr>
<tr>
<td>Tray capacity</td>
</tr>
<tr>
<td>Box capacity</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carrier tape specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surface resistance</td>
</tr>
<tr>
<td>Bake ability</td>
</tr>
<tr>
<td>Tape width</td>
</tr>
<tr>
<td>Pocket pitch</td>
</tr>
<tr>
<td>Pocket depth</td>
</tr>
<tr>
<td>Reel diameter</td>
</tr>
<tr>
<td>Reel capacity</td>
</tr>
<tr>
<td>Box capacity</td>
</tr>
<tr>
<td>Weight</td>
</tr>
</tbody>
</table>

Dry pack information

The products are delivered in trays or tape & reel. These inner shipment containers are dry packed in standard moisture barrier bags according to IPC/JEDEC standard J-STD-033A (Handling, packing, shipping and use of moisture/reflow sensitivity surface mount devices).

Using products in high temperature Pb-free soldering processes requires dry pack storage and handling. In case the products have been stored in an uncontrolled environment and no longer can be considered dry, the modules must be baked according to the referred IPC/JEDEC standard.
Product Qualification Specification

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual inspection</td>
<td>JESD22-B101</td>
</tr>
<tr>
<td>Temperature cycling</td>
<td>JESD22-A104-B</td>
</tr>
<tr>
<td>Dwell time</td>
<td>30 min</td>
</tr>
<tr>
<td>Transfer time</td>
<td>0-1 min</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-40 °C to +125 °C</td>
</tr>
<tr>
<td>Number of cycles</td>
<td>300 cycles</td>
</tr>
<tr>
<td>High temperature storage life</td>
<td>JESD22-A103-B</td>
</tr>
<tr>
<td>Temperature</td>
<td>125 °C</td>
</tr>
<tr>
<td>Duration</td>
<td>1000 h</td>
</tr>
<tr>
<td>Cold (in operation)</td>
<td>IEC 68-2-1, test Ad</td>
</tr>
<tr>
<td>Temperature T_a</td>
<td>-45 °C</td>
</tr>
<tr>
<td>Duration</td>
<td>72 h</td>
</tr>
<tr>
<td>Lead integrity</td>
<td>JESD22-B105-C</td>
</tr>
<tr>
<td>Test condition A</td>
<td>1000 g</td>
</tr>
<tr>
<td>Weight</td>
<td>30 s</td>
</tr>
<tr>
<td>Solder ability (only apply to through hole version)</td>
<td>IEC 68-2-54</td>
</tr>
<tr>
<td>Solder immersion depth</td>
<td>1 mm</td>
</tr>
<tr>
<td>Duration of immersion (F_c time)</td>
<td>15 s</td>
</tr>
<tr>
<td>T_a (time for onset of wetting)</td>
<td><4 s</td>
</tr>
<tr>
<td>Time to F_b</td>
<td>8 s</td>
</tr>
<tr>
<td>Wetting Strength F_b</td>
<td>>100 mN/m</td>
</tr>
<tr>
<td>Stability F_c/F_b</td>
<td>>0.8</td>
</tr>
<tr>
<td>Steady State Temperature Humidity Bias Life Test</td>
<td>JESD22-A101-B</td>
</tr>
<tr>
<td>Temperature</td>
<td>+85 °C</td>
</tr>
<tr>
<td>Humidity</td>
<td>85 % RH</td>
</tr>
<tr>
<td>Duration</td>
<td>1000 hours</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>Maximum</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>JESD22-B104-B</td>
</tr>
<tr>
<td>Peak acceleration</td>
<td>200 g</td>
</tr>
<tr>
<td>Duration</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>Number of shocks</td>
<td>5 in each of two directions of three axes</td>
</tr>
<tr>
<td>Vibration, variable freq</td>
<td>JESD22-B103-B</td>
</tr>
<tr>
<td>Frequency range</td>
<td>10-1000 Hz</td>
</tr>
<tr>
<td>Acceleration amplitude</td>
<td>10 g or displacement amplitude 1.0 mm</td>
</tr>
<tr>
<td>Random vibration</td>
<td>JESD22-B103-B</td>
</tr>
<tr>
<td>Frequency</td>
<td>2-500 Hz</td>
</tr>
<tr>
<td>Acceleration density</td>
<td>0.008-0.2 g²/Hz</td>
</tr>
<tr>
<td>Operational life test</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>85 °C</td>
</tr>
<tr>
<td>Load</td>
<td>Maximum</td>
</tr>
<tr>
<td>ON</td>
<td>9 min</td>
</tr>
<tr>
<td>OFF</td>
<td>3 min</td>
</tr>
<tr>
<td>Test duration</td>
<td>1000 h</td>
</tr>
<tr>
<td>Moisture reflow sensitivity classification test</td>
<td>J-STD-020C</td>
</tr>
<tr>
<td>SnPb eutectic MSL 1</td>
<td>225 °C</td>
</tr>
<tr>
<td>Pb free MSL 3</td>
<td>260 °C</td>
</tr>
<tr>
<td>Resistance to cleaning agents</td>
<td>IEC 68-2-45 Xa Method 2</td>
</tr>
<tr>
<td>Water</td>
<td>+55 ±5 °C</td>
</tr>
<tr>
<td>Glycol ether</td>
<td>+35 ±5 °C</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>+35 ±5 °C</td>
</tr>
</tbody>
</table>